$$ \newcommand{\dint}{\mathrm{d}} \newcommand{\vphi}{\boldsymbol{\phi}} \newcommand{\vpi}{\boldsymbol{\pi}} \newcommand{\vpsi}{\boldsymbol{\psi}} \newcommand{\vomg}{\boldsymbol{\omega}} \newcommand{\vsigma}{\boldsymbol{\sigma}} \newcommand{\vzeta}{\boldsymbol{\zeta}} \renewcommand{\vx}{\mathbf{x}} \renewcommand{\vy}{\mathbf{y}} \renewcommand{\vz}{\mathbf{z}} \renewcommand{\vh}{\mathbf{h}} \renewcommand{\b}{\mathbf} \renewcommand{\vec}{\mathrm{vec}} \newcommand{\vecemph}{\mathrm{vec}} \newcommand{\mvn}{\mathcal{MN}} \newcommand{\G}{\mathcal{G}} \newcommand{\M}{\mathcal{M}} \newcommand{\N}{\mathcal{N}} \newcommand{\S}{\mathcal{S}} \newcommand{\diag}[1]{\mathrm{diag}(#1)} \newcommand{\diagemph}[1]{\mathrm{diag}(#1)} \newcommand{\tr}[1]{\text{tr}(#1)} \renewcommand{\C}{\mathbb{C}} \renewcommand{\R}{\mathbb{R}} \renewcommand{\E}{\mathbb{E}} \newcommand{\D}{\mathcal{D}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerbig}[1]{\left \langle #1 \right \rangle} \newcommand{\abs}[1]{\lvert #1 \rvert} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\two}{\mathrm{II}} \newcommand{\GL}{\mathrm{GL}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\grad}[1]{\mathrm{grad} \, #1} \newcommand{\gradat}[2]{\mathrm{grad} \, #1 \, \vert_{#2}} \newcommand{\Hess}[1]{\mathrm{Hess} \, #1} \newcommand{\T}{\text{T}} \newcommand{\dim}[1]{\mathrm{dim} \, #1} \newcommand{\partder}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\rank}[1]{\mathrm{rank} \, #1} $$

Agustinus Kristiadi



Uncertainty quantification in deep learning
Bayesian inference
Riemannian geometry


University of Tübingen, Germany

Ph.D., Computer Science, 2019-
Methods of Machine Learning group, advised by Philipp Hennig

University of Bonn, Germany

M.Sc., Computer Science, 2017-2019
Theoretical Computer Science, Intelligent Systems
Grade: 1.1 (3.9 GPA equivalent)

Universitas Atma Jaya Yogyakarta, Indonesia

B.Eng., Informatics Engineering, 2009-2013
Numerics, Soft Computing
Thesis: Parallel Particle Swarm Optimization for Image Segmentation
GPA: 3.9


University of Tübingen

Tutor, Probabilistic Machine Learning, Summer Semester 2020
Tutor, Data Literacy, Winter Semester 2019-2020

Universitas Atma Jaya Yogyakarta

Tutor, Advanced Data Structure, 2012
Tutor, Database, 2011

Academic Experience

Methods of Machine Learning group, University of Tübingen

Research Assistant, 2019-

Smart Data Analytics (SDA) group, University of Bonn

Student Research Assistant, 2017-2019

Universitas Atma Jaya Yogyakarta

Research Assistant, 2016-2017

Industry Experience

GDP Labs

Software Engineer, 2013-2015

Astra International

Software Engineering Intern, 2012


English (IELTS 8.0)
German (A2)
Indonesian (native)
Javanese (native)


Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Kristiadi, Agustinus, Matthias Hein, and Philipp Hennig. ICML (2020). To appear.

Fast Predictive Uncertainty for Classification with Bayesian Deep Networks

Hobbhahn, Marius, Agustinus Kristiadi, and Philipp Hennig. arXiv preprint arXiv:2003.01227 (2020).

Predictive Uncertainty Quantification with Compound Density Networks

Kristiadi, Agustinus and Asja Fischer. arXiv preprint arXiv:1902.01080 (2019).
[arxiv] [code]

Incorporating Literals into Knowledge Graph Embeddings

Kristiadi, Agustinus*, Mohammad Asif Khan*, Denis Lukovnikov, Jens Lehmann, and Asja Fischer. ISWC (2019).
[arxiv] [code]

Improving Response Selection in Multi-turn Dialogue Systems by Incorporating Domain Knowledge

Chauduri, Debanjan, Agustinus Kristiadi, Jens Lehmann, Asja Fischer. CoNLL (2018).
[arxiv] [code]

Deep Convolutional Level Set Method for Image Segmentation

Kristiadi, Agustinus, and Pranowo Pranowo. Journal of ICT Research and Applications 11.3 (2017): 284-298.
[pdf] [code]

Parallel Particle Swarm Optimization for Image Segmentation

Kristiadi, Agustinus, Pranowo Pranowo, and Paulus Mudjihartono. DEIS (2013).
[pdf] [code]