$$\newcommand{\dint}{\mathrm{d}} \newcommand{\vphi}{\boldsymbol{\phi}} \newcommand{\vpi}{\boldsymbol{\pi}} \newcommand{\vpsi}{\boldsymbol{\psi}} \newcommand{\vomg}{\boldsymbol{\omega}} \newcommand{\vsigma}{\boldsymbol{\sigma}} \newcommand{\vzeta}{\boldsymbol{\zeta}} \renewcommand{\vx}{\mathbf{x}} \renewcommand{\vy}{\mathbf{y}} \renewcommand{\vz}{\mathbf{z}} \renewcommand{\vh}{\mathbf{h}} \renewcommand{\b}{\mathbf} \renewcommand{\vec}{\mathrm{vec}} \newcommand{\vecemph}{\mathrm{vec}} \newcommand{\mvn}{\mathcal{MN}} \newcommand{\G}{\mathcal{G}} \newcommand{\M}{\mathcal{M}} \newcommand{\N}{\mathcal{N}} \newcommand{\S}{\mathcal{S}} \newcommand{\diag}[1]{\mathrm{diag}(#1)} \newcommand{\diagemph}[1]{\mathrm{diag}(#1)} \newcommand{\tr}[1]{\text{tr}(#1)} \renewcommand{\C}{\mathbb{C}} \renewcommand{\R}{\mathbb{R}} \renewcommand{\E}{\mathbb{E}} \newcommand{\D}{\mathcal{D}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerbig}[1]{\left \langle #1 \right \rangle} \newcommand{\abs}[1]{\lvert #1 \rvert} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\two}{\mathrm{II}} \newcommand{\GL}{\mathrm{GL}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\grad}[1]{\mathrm{grad} \, #1} \newcommand{\gradat}[2]{\mathrm{grad} \, #1 \, \vert_{#2}} \newcommand{\Hess}[1]{\mathrm{Hess} \, #1} \newcommand{\T}{\text{T}} \newcommand{\dim}[1]{\mathrm{dim} \, #1} \newcommand{\partder}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\rank}[1]{\mathrm{rank} \, #1}$$

Email

### Interest

Uncertainty quantification in deep learning
Bayesian inference
Riemannian geometry

### Education

#### University of Tübingen, Germany

Ph.D., Computer Science, 2019-
Methods of Machine Learning group, advised by Philipp Hennig

#### University of Bonn, Germany

M.Sc., Computer Science, 2017-2019
Theoretical Computer Science, Intelligent Systems

#### Universitas Atma Jaya Yogyakarta, Indonesia

B.Eng., Informatics Engineering, 2009-2013
Numerics, Soft Computing
Thesis: Parallel Particle Swarm Optimization for Image Segmentation
GPA: 3.9

### Teaching

#### University of Tübingen

Tutor, Probabilistic Machine Learning, Summer Semester 2020
Tutor, Data Literacy, Winter Semester 2019-2020

#### Universitas Atma Jaya Yogyakarta

Tutor, Database, 2011

#### Methods of Machine Learning group, University of Tübingen

Research Assistant, 2019-

#### Smart Data Analytics (SDA) group, University of Bonn

Student Research Assistant, 2017-2019

#### Universitas Atma Jaya Yogyakarta

Research Assistant, 2016-2017

### Industry Experience

#### GDP Labs

Software Engineer, 2013-2015

#### Astra International

Software Engineering Intern, 2012

### Language

English (IELTS 8.0)
German (A2)
Indonesian (native)
Javanese (native)

### Publication

#### Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Kristiadi, Agustinus, Matthias Hein, and Philipp Hennig. ICML (2020). To appear.
[arxiv]

#### Fast Predictive Uncertainty for Classification with Bayesian Deep Networks

Hobbhahn, Marius, Agustinus Kristiadi, and Philipp Hennig. arXiv preprint arXiv:2003.01227 (2020).
[arxiv]

#### Predictive Uncertainty Quantification with Compound Density Networks

Kristiadi, Agustinus and Asja Fischer. arXiv preprint arXiv:1902.01080 (2019).
[arxiv] [code]

#### Incorporating Literals into Knowledge Graph Embeddings

Kristiadi, Agustinus*, Mohammad Asif Khan*, Denis Lukovnikov, Jens Lehmann, and Asja Fischer. ISWC (2019).
[arxiv] [code]

#### Improving Response Selection in Multi-turn Dialogue Systems by Incorporating Domain Knowledge

Chauduri, Debanjan, Agustinus Kristiadi, Jens Lehmann, Asja Fischer. CoNLL (2018).
[arxiv] [code]

#### Deep Convolutional Level Set Method for Image Segmentation

Kristiadi, Agustinus, and Pranowo Pranowo. Journal of ICT Research and Applications 11.3 (2017): 284-298.
[pdf] [code]

#### Parallel Particle Swarm Optimization for Image Segmentation

Kristiadi, Agustinus, Pranowo Pranowo, and Paulus Mudjihartono. DEIS (2013).
[pdf] [code]