$$ \newcommand{\dint}{\text{d}} \newcommand{\vphi}{\boldsymbol{\phi}} \newcommand{\vpi}{\boldsymbol{\pi}} \newcommand{\vpsi}{\boldsymbol{\psi}} \newcommand{\vomg}{\boldsymbol{\omega}} \newcommand{\vsigma}{\boldsymbol{\sigma}} \newcommand{\vzeta}{\boldsymbol{\zeta}} \renewcommand{\vx}{\mathbf{x}} \renewcommand{\vy}{\mathbf{y}} \renewcommand{\vz}{\mathbf{z}} \renewcommand{\vh}{\mathbf{h}} \renewcommand{\b}{\mathbf} \renewcommand{\vec}{\text{vec}} \newcommand{\vecemph}{\text{\emph{vec}}} \newcommand{\mvn}{\mathcal{MN}} \newcommand{\G}{\mathcal{G}} \newcommand{\M}{\mathcal{M}} \newcommand{\N}{\mathcal{N}} \newcommand{\S}{\mathcal{S}} \newcommand{\diag}[1]{\text{diag}(#1)} \newcommand{\diagemph}[1]{\text{\emph{diag}}(#1)} \newcommand{\tr}[1]{\text{tr}(#1)} \renewcommand{\C}{\mathbb{C}} \renewcommand{\R}{\mathbb{R}} \renewcommand{\E}{\mathbb{E}} \newcommand{\D}{\mathcal{D}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerbig}[1]{\left \langle #1 \right \rangle} \newcommand{\abs}[1]{\lvert #1 \rvert} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\two}{\text{II}} \newcommand{\GL}{\text{GL}} \newcommand{\Id}{\text{Id}} \newcommand{\grad}[1]{\text{grad} \, #1} \newcommand{\gradat}[2]{\text{grad} \, #1 \, \vert_{#2}} \newcommand{\Hess}[1]{\text{Hess} \, #1} \newcommand{\T}{\text{T}} \newcommand{\dim}[1]{\text{dim} \, #1} \newcommand{\partder}[2]{\frac{\partial #1}{\partial #2}} $$

Optimization and Gradient Descent on Riemannian Manifolds

One of the most ubiquitous applications in the field of geometry is the optimization problem. In this article we will discuss the familiar optimization problem on Euclidean spaces by focusing on the gradient descent method, and generalize them on Riemannian manifolds.

Notes on Riemannian Geometry

This article is a collection of small notes on Riemannian geometry that I find useful as references. It is largely based on Lee's books on smooth and Riemannian manifolds.

Minkowski's, Dirichlet's, and Two Squares Theorem

Application of Minkowski's Theorem in geometry problems, Dirichlet's Approximation Theorem, and Two Squares Theorem.

Reduced Betti number of sphere: Mayer-Vietoris Theorem

A proof of reduced homology of sphere with Mayer-Vietoris sequence.

Brouwer's Fixed Point Theorem: A Proof with Reduced Homology

A proof of special case (ball) of Brouwer's Fixed Point Theorem with Reduced Homology.

Natural Gradient Descent

Intuition and derivation of natural gradient descent.

Fisher Information Matrix

An introduction and intuition of Fisher Information Matrix.

Introduction to Annealed Importance Sampling

An introduction and implementation of Annealed Importance Sampling (AIS).

Gibbs Sampler for LDA

Implementation of Gibbs Sampler for the inference of Latent Dirichlet Allocation (LDA)

Boundary Seeking GAN

Training GAN by moving the generated samples to the decision boundary.