Agustinus Kristiadi's Blog
http://wiseodd.github.io/
Mon, 15 Jul 2019 08:38:06 +0200Mon, 15 Jul 2019 08:38:06 +0200Jekyll v3.8.5Optimization and Gradient Descent on Riemannian Manifolds<p>Geometry can be seen as a generalization of calculus on Riemannian manifolds. Objects in calculus such as gradient, Jacobian, and Hessian on $\R^n$ are adapted on arbitrary Riemannian manifolds. This fact let us also generalize one of the most ubiquitous problem in calculus: the optimization problem. The implication of this generalization is far-reaching: We can make a more general and thus flexible assumption regarding the domain of our optimization, which might fit real-world problems better or has some desirable properties.</p>
<p>In this article, we will focus on the most popular optimization there is, esp. in machine learning: the gradient descent method. We will begin with a review on the optimization problem of a real-valued function on $\R^n$, which we should have been familiar with. Next, we will adapt the gradient descent method to make it work in optimization problem of a real-valued function on an arbitrary Riemannian manifold $(\M, g)$. Lastly, we will discuss how <a href="/techblog/2018/03/14/natural-gradient/">natural gradient descent</a> method can be seen from this perspective, instead of purely from the second-order optimization point-of-view.</p>
<h2 class="section-heading">Optimization problem and the gradient descent</h2>
<p>Let $\R^n$ be the usual Euclidean space (i.e. a Riemannian manifold $(\R^n, \bar{g})$ where $\bar{g}_{ij} = \delta_{ij}$) and let $f: \R^n \to \R$ be a real-valued function. An (unconstrained) optimization problem on this space has the form</p>
<script type="math/tex; mode=display">\min_{x \in \R^n} f(x) \, .</script>
<p>That is we would like to find a point $\hat{x} \in \R^n$ such that $f(\hat{x})$ is the minimum of $f$.</p>
<p>One of the most popular numerical method for solving this problem is the gradient descent method. Its algorithm is as follows.</p>
<p><strong>Algorithm 1 (Euclidean gradient descent).</strong></p>
<ol>
<li>Pick arbitrary $x_{(0)} \in \R^n$ and let $\alpha \in \R$ with $\alpha > 0$</li>
<li>While the stopping criterion is not satisfied:
<ol>
<li>Compute the gradient of $f$ at $x_{(t)}$, i.e. $h_{(t)} := \gradat{f}{x_{(t)}}$</li>
<li>Move in the direction of $-h_{(t)}$, i.e. $x_{(t+1)} = x_{(t)} - \alpha h_{(t)}$</li>
<li>$t = t+1$</li>
</ol>
</li>
<li>Return $x_{(t)}$</li>
</ol>
<p class="right">//</p>
<p>The justification of the gradient descent method is because of the fact that the gradient is the direction in which $f$ is increasing fastest. Its negative therefore points to the direction of steepest descent.</p>
<p><strong>Proposition 1.</strong> <em>Let $f: \R^n \to \R$ be a real-valued function on $\R^n$ and $x \in \R^n$. Among all unit vector $v \in \R^n$, the gradient $\grad f \, \vert_x$ of $f$ at $x$ is the direction in which the directional derivative $D_v \, f \, \vert_x$ is greatest. Furthermore, $\norm{\gradat{f}{x}}$ equals to the value of the directional derivative in that direction.</em></p>
<p><em>Proof.</em> First, note that, by our assumption, $\norm{v} = 1$. By definition of the directional derivative and dot product on $\R^n$,</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
D_v \, f \, \vert_x &= \grad f \, \vert_x \cdot v \\
&= \norm{\gradat{f}{x}} \norm{v} \cos \theta \\
&= \norm{\gradat{f}{x}} \cos \theta \, ,
\end{align} %]]></script>
<p>where $\theta$ is the angle between $\gradat{f}{x}$ and $v$. As $\norm{\cdot} \geq 0$ and $-1 \leq \cos \theta \leq 1$, the above expression is maximized whenever $\cos \theta = 1$. This implies that the particular vector $\hat{v}$ that maximizes the directional derivative points in the same direction as $\gradat{f}{x}$. Furthermore, plugging in $\hat{v}$ into the above equation, we get</p>
<script type="math/tex; mode=display">D_{\hat{v}} \, f \, \vert_x = \norm{\gradat{f}{x}} \, .</script>
<p>Thus, the length of $\gradat{f}{x}$ is equal to the value of $D_{\hat{v}} \, f \, \vert_x$.</p>
<p class="right">$\square$</p>
<h2 class="section-heading">Gradient descent on Riemannian manifolds</h2>
<p><strong>Remark.</strong> <em>These <a href="/techblog/2019/02/22/riemannian-geometry/">notes about Riemannian geometry</a> are useful as references. We shall use the Einstein summation convention: Repeated indices above and below are implied to be summed, e.g. $v^i w_i \implies \sum_i v^i w_i$ and $g_{ij} v^i v^j \implies \sum_{ij} g_{ij} v^i v^j$. By convention the index in $\partder{}{x^i}$ is thought to be a lower index.</em></p>
<p>We now want to break the confine of the Euclidean space. We would like to generalize the gradient descent algorithm on a function defined on a Riemannian manifold. Based on Algorithm 1, at least there are two parts of the algorithm that we need to adapt, namely, (i) the gradient of $f$ and (ii) the way we move between points on $\M$.</p>
<p>Suppose $(\M, g)$ is a $n$-dimensional Riemannian manifold. Let $f: \M \to R$ be a real-valued function (scalar field) defined on $\M$. Then, the optimization problem on $\M$ simply has the form</p>
<script type="math/tex; mode=display">\min_{p \in \M} f(p) \, .</script>
<p>Although it seems innocent enough (we only replace $\R^n$ with $\M$ from the Euclidean version), some difficulties exist.</p>
<p>First, we shall discuss about the gradient of $f$ on $\M$. By definition, $\grad{f}$ is a vector field on $\M$, i.e. $\grad{f} \in \mathfrak{X}(\M)$ and at each $p \in \M$, $\gradat{f}{p}$ is a tangent vector in $T_p \M$. Let the differential $df$ of $f$ be a one one-form, which, in given coordinates $\vx_p := (x^1(p), \dots, x^n(p))$, has the form</p>
<script type="math/tex; mode=display">df = \partder{f}{x^i} dx^i \, .</script>
<p>Then, the gradient of $f$ is obtained by raising an index of $df$. That is,</p>
<script type="math/tex; mode=display">\grad{f} = (df)^\sharp \, ,</script>
<p>and in coordinates, it has the expression</p>
<script type="math/tex; mode=display">\grad{f} = g^{ij} \partder{f}{x^i} \partder{}{x^j} \, .</script>
<p>At any $p \in \M$, given $v \in T_x \M$, it is characterized by the following equation:</p>
<script type="math/tex; mode=display">\inner{\gradat{f}{p}, v}_g = df(v) = vf \, .</script>
<p>That is, pointwise, the inner product of the gradient and any tangent vector is the action of derivation $v$ on $f$. We can think of this action as taking directional derivative of $f$ in the direction $v$. Thus, we have the analogue of Proposition 1 on Riemannian manifolds.</p>
<p><strong>Proposition 2.</strong> <em>Let $(\M, g)$ be a Riemannian manifold and $f: \M \to \R$ be a real-valued function on $\M$ and $p \in \M$. Among all unit vector $v \in T_p \M$, the gradient $\gradat{f}{p}$ of $f$ at $p$ is the direction in which the directional derivative $vf$ is greatest. Furthermore, $\norm{\gradat{f}{p}}$ equals to the value of the directional derivative in that direction.</em></p>
<p><em>Proof.</em> We simply note that by definition of inner product induced by $g$, we have</p>
<script type="math/tex; mode=display">\inner{u, w}_g = \norm{u}_g \norm{w}_g \cos \theta \qquad \forall \, u, w \in T_p \M \, ,</script>
<p>where $\theta$ is again the angle between $u$ and $w$. Using the characteristic of $\gradat{f}{p}$ we have discussed above and by substituting $vf$ for $D_v \, f \, \vert_p$ in the proof of Proposition 1, we immediately get the desired result.</p>
<p class="right">$\square$</p>
<p>Proposition 2 therefore provides us with a justification of just simply substituting the Euclidean gradient with the Riemannian gradient in Algorithm 1.</p>
<p>To make this concrete, we do the computation in coordinates. In coordinates, we can represent $df$ by a row vector $d$ (i.e. a sequence of numbers in the sense of linear algebra) containing all partial derivatives of $f$:</p>
<script type="math/tex; mode=display">d := \left( \partder{f}{x^1}, \dots, \partder{f}{x^n} \right) \, .</script>
<p>Given the matrix representation $G$ of the metric tensor $g$ in coordinates, the gradient of $f$ is represented by a column vector $h$, such that</p>
<script type="math/tex; mode=display">h = G^{-1} d^\T \, .</script>
<p><strong>Example 1. (Euclidean gradient in coordinates).</strong> Notice that in the Euclidean case, $\bar{g}_{ij} = \delta_{ij}$, thus it is represented by an identity matrix $I$, in coordinates. Therefore the Euclidean gradient is simply</p>
<script type="math/tex; mode=display">h = I^{-1} d^\T = d^\T \, .</script>
<p class="right">//</p>
<p>The second modification to Algorithm 1 that we need to find the analogue of is the way we move between points on $\M$. Notice that, at each $x \in \R^n$, the way we move between points in the Euclidean gradient descent is by following a straight line in the direction $\gradat{f}{x}$. We know by triangle inequality that straight line is the path with shortest distance between points in $\R^n$.</p>
<p>On Riemannian manifolds, we move between points by the means of curves. There exist a special kind of curve $\gamma: I \to \M$, where $I$ is an interval, that are “straight” between two points on $\M$, in the sense that the covariant derivative $D_t \gamma’$ of the velocity vector along the curve itself, at any time $t$ is $0$. The intuition is as follows: Although if we look at $\gamma$ on $\M$ from the outsider’s point-of-view, it is not straight (i.e. it follows the curvature of $\M$), as far as the inhabitants of $\M$ are concerned, $\gamma$ is straight, as its velocity vector (its direction and length) is the same everywhere along $\gamma$. Thus, geodesics are the generalization of straight lines on Riemannian manifolds.</p>
<p>For any $p \in \M$ and $v \in T_p \M$, we can show that there always exists a geodesic starting at $p$ with initial velocity $v$, denoted by $\gamma_v$. Furthermore, if $c, t \in \R$ we can rescale any geodesic $\gamma_v$ by</p>
<script type="math/tex; mode=display">\gamma_{cv}(t) = \gamma_v (ct) \, ,</script>
<p>and thus we can define a map $\exp_p(v): T_p \M \to \M$ by</p>
<script type="math/tex; mode=display">\exp_p(v) = \gamma_v(1) \, ,</script>
<p>called the exponential map. The exponential map is the generalization of “moving straight in the direction $v$” on Riemannian manifolds.</p>
<p><strong>Example 2. (Exponential map on a sphere).</strong> Let $\mathbb{S}^n(r)$ be a sphere embedded in $\R^{n+1}$ with radius $r$. The shortest path between any pair of points on the sphere can be found by following the <a href="https://en.wikipedia.org/wiki/Great_circle">great circle</a> connecting them.</p>
<p>Let $p \in \mathbb{S}^n(r)$ and $0 \neq v \in T_p \mathbb{S}^n(r)$ be arbitrary. The curve $\gamma_v: \R \to \R^{n+1}$ given by</p>
<script type="math/tex; mode=display">\gamma_v(t) = \cos \left( \frac{t\norm{v}}{r} \right) p + \sin \left( \frac{t\norm{v}}{r} \right) r \frac{v}{\norm{v}} \, ,</script>
<p>is a geodesic, as its image is the great circle formed by the intersection of $\mathbb{S}^n(r)$ with the linear subspace of $\R^{n+1}$ spanned by $\left\{ p, r \frac{v}{\norm{v}} \right\}$. Therefore the exponential map on $\mathbb{S}^n(r)$ is given by</p>
<script type="math/tex; mode=display">\exp_p(v) = \cos \left( \frac{\norm{v}}{r} \right) p + \sin \left( \frac{\norm{v}}{r} \right) r \frac{v}{\norm{v}} \, .</script>
<p class="right">//</p>
<p>Given the exponential map, our modification to Algorithm 1 is complete, which we show in Algorithm 2. The new modifications from Algorithm 1 are in <span style="color:blue">blue</span>.</p>
<p><strong>Algorithm 2 (Riemannian gradient descent).</strong></p>
<ol>
<li>Pick arbitrary <span style="color:blue">$p_{(0)} \in \M$</span>. Let $\alpha \in \R$ with $\alpha > 0$</li>
<li>While the stopping criterion is not satisfied:
<ol>
<li>Compute the gradient of $f$ at $p_{(t)}$, i.e. <span style="color:blue">$h_{(t)} := \gradat{f}{p_{(t)}} = (df \, \vert_{p_{(t)}})^\sharp$</span></li>
<li>Move in the direction $-h_{(t)}$, i.e. <span style="color:blue">$p_{(t+1)} = \exp_{p_{(t)}}(-\alpha h_{(t)})$</span></li>
<li>$t = t+1$</li>
</ol>
</li>
<li>Return $p_{(t)}$</li>
</ol>
<h2 class="section-heading">Approximating the exponential map</h2>
<p>In general, the exponential map is difficult to compute, as to compute a geodesic, we have to solve a system of second-order ODE. Therefore, for a computational reason, we would like to approximate the exponential map with cheaper alternative.</p>
<p>Let $p \in \M$ be arbitrary. We define a map $R_p: T\M \to \M$ called the <strong><em>retraction</em></strong> map, by the following properties:</p>
<ol>
<li>$R_p(0) = p$</li>
<li>$dR_p(0) = \text{Id}_{T_p \M}$.</li>
</ol>
<p>The second property is called the <strong><em>local rigidity</em></strong> condition and it preserves gradients at $p$. In particular, the exponential map is a retraction. Furthermore, if $d_g$ denotes the Riemannian distance and $t \in \R$, retraction can be seen as a first-order approximation of the exponential map, in the sense that</p>
<script type="math/tex; mode=display">d_g(\exp_p(tv), R_p(tv)) = O(t^2) \, .</script>
<p>On an arbitrary embedded submanifold $\S \in \R^{n+1}$, if $p \in \S$ and $v \in T_p \S$, viewing $p$ to be a point on the ambient manifold and $v$ to be a point on the ambient tangent space $T_p \R^{n+1}$, we can compute $R_p(v)$ by (i) moving along $v$ to get $p + v$ and then (ii) project the point $p+v$back to $\S$.</p>
<p><strong>Example 3. (Retraction on a sphere).</strong> Let $\mathbb{S}^n(r)$ be a sphere embedded in $\R^{n+1}$ with radius $r$. The retraction on any $p \in \mathbb{S}^n(r)$ and $v \in T_p \mathbb{S}^n(r)$ is defined by</p>
<script type="math/tex; mode=display">R_p(v) = r \frac{p + v}{\norm{p + v}}</script>
<p class="right">//</p>
<p>Therefore, the Riemannian gradient descent in Algorithm 2 can be modified to be</p>
<p><strong>Algorithm 3 (Riemannian gradient descent with retraction).</strong></p>
<ol>
<li>Pick arbitrary $p_{(0)} \in \M$. Let $\alpha \in \R$ with $\alpha > 0$</li>
<li>While the stopping criterion is not satisfied:
<ol>
<li>Compute the gradient of $f$ at $p_{(t)}$, i.e. $h_{(t)} := \gradat{f}{p_{(t)}} = (df \, \vert_{p_{(t)}})^\sharp$</li>
<li>Move in the direction $-h_{(t)}$, i.e. <span style="color:blue">$p_{(t+1)} = R_{p_{(t)}}(-\alpha h_{(t)})$</span></li>
<li>$t = t+1$</li>
</ol>
</li>
<li>Return $p_{(t)}$</li>
</ol>
<h2 class="section-heading">Natural gradient descent</h2>
<p>One of the most important applications of the Riemannian gradient descent in machine learning is for doing optimization of statistical manifolds. We define a statistical manifold $(\R^n, g)$ to be the set $\R^n$ corresponding to the set of parameter of a statistical model $p_\theta(z)$, equipped with metric tensor $g$ which is the Fisher information metric, given by</p>
<script type="math/tex; mode=display">g_{ij} = \E_{z \sim p_\theta} \left[ \partder{\log p_\theta(z)}{\theta^i} \partder{\log p_\theta(z)}{\theta^j} \right] \, .</script>
<p>The most common objective function $f$ in the optimization problem on a statistical manifold is the expected log-likelihood function of our statistical model. That is, given a dataset $\D = \{ z_i \}$, the objective is given by $f(\theta) = \sum_{z \in \D} \log p_\theta(z)$.</p>
<p>The metric tensor $g$ is represented by $n \times n$ matrix $F$, called the <a href="/techblog/2018/03/11/fisher-information/"><em>Fisher information matrix</em></a>. The Riemannian gradient in this manifold is therefore can be represented by a column vector $h = F^{-1} d^\T$. Furthermore, as the manifold is $\R^n$, the construction of the retraction map we have discussed previously tells us that we can simply do addition $p + v$ for any $p \in \R^n$ and $v \in T_p \R^n$. This is well defined as there is a natural isomorphism between $\R^n$ and $T_p \R^n$. All in all, the gradient descent in this manifold is called the <a href="/techblog/2018/03/14/natural-gradient/"><em>natural gradient descent</em></a> and is presented in Algorithm 4 below.</p>
<p><strong>Algorithm 4 (Natural gradient descent).</strong></p>
<ol>
<li>Pick arbitrary $\theta_{(0)} \in \R^n$. Let $\alpha \in \R$ with $\alpha > 0$</li>
<li>While the stopping criterion is not satisfied:
<ol>
<li>Compute the gradient of $f$ at $\theta_{(t)}$, i.e. $h_{(t)} := F^{-1} d^\T$</li>
<li>Move in the direction $-h_{(t)}$, i.e. $\theta_{(t+1)} = \theta_{(t)} - \alpha h_{(t)}$</li>
<li>$t = t+1$</li>
</ol>
</li>
<li>Return $\theta_{(t)}$</li>
</ol>
<h2 class="section-heading">Conclusion</h2>
<p>Optimization in Riemannian manifold is an interesting and important application in the field of geometry. It generalizes the optimization methods from Euclidean spaces onto Riemannian manifolds. Specifically, in the gradient descent method, adapting it to a Riemannian manifold requires us to use the Riemannian gradient as the search direction and the exponential map or retraction to move between points on the manifold.</p>
<p>One major difficulty exists: Computing and storing the matrix representation $G$ of the metric tensor are very expensive. Suppose the manifold is $n$-dimensional. Then, the size of $G$ is in $O(n^2)$ and the complexity of inverting it is in $O(n^3)$. In machine learning, $n$ could be in the order of million, so a naive implementation is infeasible. Thankfully, many approximations of the metric tensor, especially for the Fisher information metric exist (e.g. [7]). Thus, even with these difficulties, the Riemannian gradient descent or its variants have been successfully applied on many areas, such as in inference problems [8], word or knowledge graph embeddings [9], etc.</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Lee, John M. “Smooth manifolds.” Introduction to Smooth Manifolds. Springer, New York, NY, 2013. 1-31.</li>
<li>Lee, John M. Riemannian manifolds: an introduction to curvature. Vol. 176. Springer Science & Business Media, 2006.</li>
<li>Fels, Mark Eric. “An Introduction to Differential Geometry through Computation.” (2016).</li>
<li>Absil, P-A., Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, 2009.</li>
<li>Boumal, Nicolas. Optimization and estimation on manifolds. Diss. Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2014.</li>
<li>Graphics: <a href="https://tex.stackexchange.com/questions/261408/sphere-tangent-to-plane">https://tex.stackexchange.com/questions/261408/sphere-tangent-to-plane</a>.</li>
<li>Martens, James, and Roger Grosse. “Optimizing neural networks with kronecker-factored approximate curvature.” International conference on machine learning. 2015.</li>
<li>Patterson, Sam, and Yee Whye Teh. “Stochastic gradient Riemannian Langevin dynamics on the probability simplex.” Advances in neural information processing systems. 2013.</li>
<li>Suzuki, Atsushi, Yosuke Enokida, and Kenji Yamanishi. “Riemannian TransE: Multi-relational Graph Embedding in Non-Euclidean Space.” (2018).</li>
</ol>
Fri, 22 Feb 2019 12:00:00 +0100
http://wiseodd.github.io/techblog/2019/02/22/optimization-riemannian-manifolds/
http://wiseodd.github.io/techblog/2019/02/22/optimization-riemannian-manifolds/mathtechblogNotes on Riemannian Geometry<p>Recently I have been studying differential geometry, including Riemannian geometry. When studying this subject, a lot of <em>aha</em> moments came up due to my previous (albeit informal) exposure to the geometric point-of-view of natural gradient method. I found that the argument from this point-of-view to be very elegant, which motivates me further to study geometry in depth. This writing is a collection of small notes (largely from Lee’s Introduction to Smooth Manifolds and Introduction to Riemannian Manifolds) that I find useful as a reference on this subject. Note that, this is by no means a completed article. I will update it as I study further.</p>
<h2 class="section-heading">Manifolds</h2>
<p>We are interested in generalizing the notion of Euclidean space into arbitrary smooth curved space, called smooth manifold. Intuitively speaking, a <strong><em>topological $n$-manifold</em></strong> $\M$ is a topological space that locally resembles $\R^n$. A <strong><em>smooth $n$-manifold</em></strong> is a topological $n$-manifold equipped with locally smooth map $\phi_p: \M \to \R^n$ around each point $p \in \M$, called the <strong><em>local coordinate chart</em></strong>.</p>
<p><strong>Example 1 (Euclidean spaces).</strong> For each $n \in \mathbb{N}$, the Euclidean space $\R^n$ is a smooth $n$-manifold with a single chart $\phi := \text{Id}_{\R^n}$, the identity map, for all $p \in \M$. Thus, $\phi$ is a <em>global coordinate chart</em>.</p>
<p class="right">//</p>
<p><strong>Example 2 (Spaces of matrices).</strong> Let $\text{M}(m \times n, \R)$ denote the set of $m \times n$ matrices with real entries. We can identify it with $\R^{mn}$ and as before, this is a smooth $mn$-dimensional manifold. Some of its subsets, e.g. the general linear group $\text{GL}(n, \R)$ and the space of full rank matrices, are smooth manifolds.</p>
<p class="right">//</p>
<p><strong>Remark 1.</strong> We will drop $n$ when referring a smooth $n$-manifold from now on, for brevity sake. Furthermore, we will start to use the <strong><em>Einstein summation convention</em></strong>: repeated indexes above and below are implied to be summed, e.g. $v_i w^i := \sum_i v_i w^i$.</p>
<p class="right">//</p>
<h2 class="section-heading">Tangent vectors and covectors</h2>
<p>At each point $p \in \M$, there exists a vector space $T_p \M$, called the <strong><em>tangent space</em></strong> of $p$. An element $v \in T_p \M$ is called the <strong><em>tangent vector</em></strong>. Let $f: \M \to \R$ be a smooth function. In local coordinate $\{x^1, \dots, x^n\}$ defined around $p$, the coordinate vectors $\{ \partial/\partial x^1, \dots, \partial/\partial x^n \}$ form a <strong><em>coordinate basis</em></strong> for $T_p \M$.</p>
<p>A tangent vector $v \in T_p \M$ can also be seen as a <strong><em>derivation</em></strong>, a linear map $C^\infty(\M) \to \R$ that follows Leibniz rule (product rule of derivative), i.e.</p>
<script type="math/tex; mode=display">v(fg) = f(p)vg + g(p)vf \enspace \enspace \forall f, g \in C^\infty(\M) \, .</script>
<p>Thus, we can also see $T_p \M$ to be the set of all derivations of $C^\infty(\M)$ at $p$.</p>
<p>For each $p \in \M$ there also exists the dual space $T_p^* \M$ of $T_p \M$, called the <strong><em>cotangent space</em></strong> at $p$. Each element $\omega \in T_p^* \M$ is called the <strong><em>tangent covector</em></strong>, which is a linear functional $\omega: T_p \M \to \R$ acting on tangent vectors at $p$. Given the same local coordinate as above, the basis for the cotangent space at $p$ is called the <strong><em>dual coordinate basis</em></strong> and is given by $\{ dx^1, \dots, dx^n \}$, such that $dx^i(\partial/\partial x^j) = \delta^i_j$ the Kronecker delta. Note that, this implies that if $v := v^i \, \partial/\partial x^i$, then $dx^i(v) = v^i$.</p>
<p>Tangent vectors and covectors follow different transformation rules. We call an object with lower index, e.g. the components of tangent covector $\omega_i$ and the coordinate basis $\partial/\partial x^i =: \partial_i$, to be following the <strong><em>covariant</em></strong> transformation rule. Meanwhile an object with upper index, e.g. the components a tangent vector $v^i$ and the dual coordinate basis $dx^i$, to be following the <strong><em>contravariant</em></strong> transformation rule. These stem from how an object transform w.r.t. change of coordinate. Recall that a vector, when all the basis vectors are scaled up by a factor of $k$, the coefficients in its linear combination will be scaled by $1/k$, thus it is said that a vector transforms <em>contra</em>-variantly (the opposite way to the basis). Analogously, we can show that when we apply the same transformation to the dual basis, the covectors coefficients will be scaled by $k$, thus it transforms the same way to the basis (<em>co</em>-variantly).</p>
<p>The partial derivatives of a scalar field (real valued function) on $\M$ can be interpreted as the components of a covector field in a coordinate-independent way. Let $f$ be such scalar field. We define a covector field $df: \M \to T^* \M$, called the <strong><em>differential</em></strong> of $f$, by</p>
<script type="math/tex; mode=display">df_p(v) := vf \enspace \enspace \text{for} \, v \in T_p\M \, .</script>
<p>Concretely, in smooth coordinates $\{ x^i \}$ around $p$, we can show that it can be written as</p>
<script type="math/tex; mode=display">df_p := \frac{\partial f}{\partial x^i} (p) \, dx^i \, \vert_p \, ,</script>
<p>or as an equation between covector fields instead of covectors:</p>
<script type="math/tex; mode=display">df := \frac{\partial f}{\partial x^i} \, dx^i \, .</script>
<p>The disjoint union of the tangent spaces at all points of $\M$ is called the <strong><em>tangent bundle</em></strong> of $\M$</p>
<script type="math/tex; mode=display">TM := \coprod_{p \in \M} T_p \M \, .</script>
<p>Meanwhile, analogously for the cotangent spaces, we define the <strong><em>cotangent bundle</em></strong> of $\M$ as</p>
<script type="math/tex; mode=display">T^*M := \coprod_{p \in \M} T^*_p \M \, .</script>
<p>If $\M$ and $\mathcal{N}$ are smooth manifolds and $F: \M \to \mathcal{N}$ is a smooth map, for each $p \in \M$ we define a map</p>
<script type="math/tex; mode=display">dF_p : T_p \M \to T_{F(p)} \mathcal{N} \, ,</script>
<p>called the <strong><em>differential</em></strong> of $F$ at $p$, as follows. Given $v \in T_p \M$:</p>
<script type="math/tex; mode=display">dF_p (v)(f) := v(f \circ F) \, .</script>
<p>Moreover, for any $v \in T_p \M$, we call $dF_p (v)$ the <strong><em>pushforward</em></strong> of $v$ by $F$ at $p$. It differs from the previous definition of differential in the sense that this map is a linear map between tangent spaces of two manifolds. Furthermore the differential of $F$ can be seen as the generalization of the total derivative in Euclidean spaces, in which $dF_p$ is represented by the Jacobian matrix.</p>
<h2 class="section-heading">Vector fields</h2>
<p>If $\M$ is a smooth $n$-manifold, a <strong><em>vector field</em></strong> on $\M$ is a continuous map $X: \M \to T\M$, written as $p \mapsto X_p$, such that $X_p \in T_p \M$ for each $p \in \M$. If $(U, (x^i))$ is any smooth chart for $\M$, we write the value of $X$ at any $p \in U \subset \M$ as</p>
<script type="math/tex; mode=display">X_p = X^i(p) \, \frac{\partial}{\partial x^i} \vert_p \, .</script>
<p>This defines $n$ functions $X^i: U \to \R$, called the <strong><em>component functions</em></strong> of $X$. The restriction of $X$ to $U$ is a smooth vector field if and only if its component functions w.r.t. the chart are smooth.</p>
<p><strong>Example 3 (Coordinate vector fields).</strong> If $(U, (x^i))$ is any smooth chart on $\M$, then $p \mapsto \partial/\partial x^i \vert_p$ is a vector field on $U$, called the <strong><em>i-th coordinate vector field</em></strong>. It is smooth as its component functions are constant. This vector fields defines a basis of the tangent space at each point.</p>
<p class="right">//</p>
<p><strong>Example 4 (Gradient).</strong> If $f \in C^\infty(\M)$ is a real-valued function on $\M$, then the gradient of $f$ is a vector field on $\M$. See the corresponding section below for more detail.</p>
<p class="right">//</p>
<p>We denote $\mathfrak{X}(\M)$ to be the set of all smooth vector fields on $\M$. It is a vector space under pointwise addition and scalar multiplication, i.e. $(aX + bY)_p = aX_p + bY_p$. The zero element is the zero vector field, whose value is $0 \in T_p \M$ for all $p \in \M$. If $f \in C^\infty(\M)$ and $X \in \mathfrak{X}(\M)$, then we define $fX: \M \to T\M$ by $(fX)_p = f(p)X_p$. Note that this defines a multiplication of a vector field with a smooth real-valued function. Furthermore, if in addition, $g \in C^\infty(\M)$ and $Y \in \mathfrak{X}(\M)$, then $fX + gY$ is also a smooth vector field.</p>
<p>A <strong><em>local frame</em></strong> for $\M$ is an ordered $n$-tuple of vector fields $(E_1, \dots, E_n)$ defined on an open subset $U \subseteq M$ that is linearly independent and spans the tangent bundle, i.e. $(E_1 \vert_p, \dots, E_n \vert_p)$ form a basis for $T_p \M$ for each $p \in \M$. It is called a <strong><em>global frame</em></strong> if $U = M$, and a <strong><em>smooth frame</em></strong> if each $E_i$ is smooth.</p>
<p>If $X \in \mathfrak{X}(\M)$ and $f \in C^\infty(U)$, we define $Xf: U \to \R$ by $(Xf)(p) = X_p f$. $X$ also defines a map $C^\infty(\M) \to C^\infty(\M)$ by $f \mapsto Xf$ which is linear and Leibniz, thus it is a derivation. Moreover, derivations of $C^\infty(\M)$ can be identified with smooth vector fields, i.e. $D: C^\infty(\M) \to C^\infty(\M)$ is a derivation if and only if it is of the form $Df = Xf$ for some $X \in \mathfrak{X}(\M)$.</p>
<h2 class="section-heading">Tensors</h2>
<p>Let $\{ V_k \}$ and $U$ be real vector spaces. A map $F: V_1 \times \dots \times V_k \to U$ is said to be <strong><em>multilinear</em></strong> if it is linear as a function of each variable separately when the others are held fixed. That is, it is a generalization of the familiar linear and bilinear maps. Furthermore, we write the vector space of all multilinear maps $ V_1 \times \dots \times V_k \to U $ as $ \text{L}(V_1, \dots, V_k; U) $.</p>
<p><strong>Example 5 (Multilinear functions).</strong> Some examples of familiar multilinear functions are</p>
<ol>
<li>The <em>dot product</em> in $ \R^n $ is a scalar-valued bilinear function of two vectors. E.g. for any $ v, w \in \R^n $, the dot product between them is $ v \cdot w := \sum_i^n v^i w^i $, which is linear on both $ v $ and $ w $.</li>
<li>The <em>determinant</em> is a real-valued multilinear function of $ n $ vectors in $ \R^n $.</li>
</ol>
<p class="right">//</p>
<p>Let $\{ W_l \}$ also be real vector spaces and suppose</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
F&: V_1 \times \dots \times V_k \to \R \\
G&: W_1 \times \dots \times W_l \to \R
\end{align} %]]></script>
<p>be multilinear maps. Define a function</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
F \otimes G &: V_1 \times \dots \times V_k \times W_1 \times \dots \times W_l \to \R \\
F \otimes G &(v_1, \dots, v_k, w_1, \dots, w_k) = F(v_1, \dots, v_k) G(w_1, \dots, w_l) \, .
\end{align} %]]></script>
<p>From the multilinearity of $ F $ and $ G $ it follows that $ F \otimes G $ is also multilinear, and is called the <strong><em>tensor product of $ F $ and $ G $</em></strong>. I.e. tensors and tensor products are multilinear map with codomain in $ \R $.</p>
<p><strong>Example 6 (Tensor products of covectors).</strong> Let $ V $ be a vector space and $ \omega, \eta \in V^* $. Recall that they both a linear map from $ V $ to $ \R $. Therefore the tensor product between them is</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\omega \otimes \eta &: V \times V \to \R \\
\omega \otimes \eta &(v_1, v_2) = \omega(v_1) \eta(v_2) \, .
\end{align} %]]></script>
<p class="right">//</p>
<p><strong>Example 7 (Tensor products of dual basis).</strong> Let $ \epsilon^1, \epsilon^2 $ be the standard dual basis for $ (\R^2)^* $. Then, the tensor product $ \epsilon^1 \otimes \epsilon^2: \R^2 \times \R^2 \to \R $ is the bilinear function defined by</p>
<script type="math/tex; mode=display">\epsilon^1 \otimes \epsilon^2(x, y) = \epsilon^1 \otimes \epsilon^2((w, x), (y, z)) := wz \, .</script>
<p class="right">//</p>
<p>We use the notation $ V_1^* \otimes \dots \otimes V_k^* $ to denote the space $ \text{L}(V_1, \dots, V_k; \R) $. Let $ V $ be a finite-dimensional vector space. If $ k \in \mathbb{N} $, a <strong><em>covariant</em> $ k $-tensor on $ V $</strong> is an element of the $ k $-fold tensor product $ V^* \otimes \dots \otimes V^* $, which is a real-valued multilinear function of $ k $ elements of $ V $ to $ \R $. The number $ k $ is called the <strong><em>rank</em></strong> of the tensor.</p>
<p>Analogously, we define a <strong><em>contravariant $ k $-tensor on $ V $</em></strong> to be an element of the element of the $ k $-fold tensor product $ V \otimes \dots \otimes V $. We can mixed the two types of tensors together: For any $ k, l \in \mathbb{N} $, we define a <strong><em>mixed tensor on $ V $ of type $ (k, l) $</em></strong> to be the tensor product of $ k $ such $ V $ and $ l $ such $ V^* $.</p>
<h2 class="section-heading">Riemannian metrics</h2>
<p>So far we have no mechanism to measure the length of (tangent) vectors like we do in standard Euclidean geometry, where the length of a vector $v$ is measured in term of the dot product $ \sqrt{v \cdot v} $. Thus, we would like to add a structure that enables us to do just that to our smooth manifold $\M$.</p>
<p>A <strong><em>Riemannian metric</em></strong> $ g $ on $ \M $ is a smooth symmetric covariant 2-tensor field on $ \M $ that is positive definite at each point. Furthermore, for each $ p \in \M $, $ g_p $ defines an inner product on $ T_p \M $, written $ \inner{v, w}_g = g_p(v, w) $ for all $ v, w \in T_p \M $. We call a tuple $(\M, g)$ to be a <strong><em>Riemannian manifold</em></strong>.</p>
<p>In any smooth local coordinate $\{x^i\}$, a Riemannian metric can be written as tensor product</p>
<script type="math/tex; mode=display">g = g_{ij} \, dx^i \otimes dx^j \, ,</script>
<p>such that</p>
<script type="math/tex; mode=display">g(v, w) = g_{ij} \, dx^i \otimes dx^j(v, w) = g_{ij} \, dx^i(v) dx^j(w) = g_{ij} \, v^i w^j \, .</script>
<p>That is we can represent $ g $ as a symmetric, positive definite matrix $ G $ taking two tangent vectors as its arguments: $ \inner{v, w}_g = v^\text{T} G w $. Furthermore, we can define a norm w.r.t. $g$ to be $\norm{\cdot}_g := \inner{v, v}_g$ for any $v \in T_p \M$.</p>
<p><strong>Example 8 (The Euclidean Metric).</strong> The simplest example of a Riemannian metric is the familiar <strong><em>Euclidean metric</em></strong> $g$ of $\R^n$ using the standard coordinate. It is defined by</p>
<script type="math/tex; mode=display">g = \delta_{ij} \, dx^i \otimes dx^j \, ,</script>
<p>which, if applied to vectors $v, w \in T_p \R^n$, yields</p>
<script type="math/tex; mode=display">g_p(v, w) = \delta_{ij} \, v^i w^j = \sum_{i=1}^n v^i w^i = v \cdot w \, .</script>
<p>Note that above, $\delta_{ij}$ is the Kronecker delta. Thus, the Euclidean metric can be represented by the $n \times n$ identity matrix.</p>
<p class="right">//</p>
<h2 class="section-heading">The tangent-cotangent isomorphism</h2>
<p>Riemannian metrics also provide an isomorphism between the tangent and cotangent space: They allow us to convert vectors to covectors and vice versa. Let $(\M, g)$ be a Riemannian manifold. We define an isomorphism $\hat{g}: T_p \M \to T_p^* \M$ as follows. For each $p \in \M$ and each $v \in T_p \M$</p>
<script type="math/tex; mode=display">\hat{g}(v) = \inner{v, \cdot}_g \, .</script>
<p>Notice that that $\hat{g}(v)$ is in $T_p^* \M$ as it is a linear functional over $T_p \M$. In any smooth coordinate $\{x^i\}$, by definition we can write $g = g_{ij} \, dx^i dx^j$. Thus we can write the isomorphism above as</p>
<script type="math/tex; mode=display">\hat{g}(v) = (g_{ij} \, v^i) \, dx^j =: v_i \, dx^j \, .</script>
<p>Notice that we transform a contravariant component $v^i$ (denoted by the upper index component $i$) to a covariant component $v_i = g_{ij} \, v^i$ (denoted by the lower index component $j$), with the help of the metric tensor $g$. Because of this, we say that we obtain a covector from a tangent vector by <strong><em>lowering an index</em></strong>. Note that, we can also denote this by “flat” symbol in musical sheets: $\hat{g}(v) =: v^\flat$.</p>
<p>As Riemannian metric can be seen as a symmetric positive definite matrix, it has an inverse $g^{ij} := g_{ij}^{-1}$, which we denote by moving the index to the top, such that $g^{ij} \, g_{jk} = g_{kj} \, g^{ji} = \delta^i_k$. We can then define the inverse map of the above isomorphism as $\hat{g}^{-1}: T_p^* \M \to T_p \M$, where</p>
<script type="math/tex; mode=display">\hat{g}^{-1}(\omega) = (g^{ij} \, \omega_j) \, \frac{\partial}{\partial x^i} =: \omega^i \, \frac{\partial}{\partial x^i} \, ,</script>
<p>for all $\omega \in T_p^* \M$. In correspondence with the previous operation, we are now looking at the components $\omega^i := g^{ij} \, \omega_j$, hence this operation is called <strong><em>raising an index</em></strong>, which we can also denote by “sharp” musical symbol: $\hat{g}^{-1}(\omega) =: \omega^\sharp$. Putting these two map together, we call the isomorphism between the tangent and cotangent space as the <strong><em>musical isomorphism</em></strong>.</p>
<h2 class="section-heading">The Riemannian gradient</h2>
<p>Let $(\M, g)$ be a Riemannian manifold, and let $f: \M \to \R$ be a real-valued function over $\M$ (i.e. a scalar field on $\M)$. Recall that $df$ is a covector field, which in coordinates has partial derivatives of $f$ as its components. We define a vector field called the <strong><em>gradient</em></strong> of $f$ by</p>
<script type="math/tex; mode=display">\begin{align}
\grad{f} := (df)^\sharp = \hat{g}^{-1}(df) \, .
\end{align}</script>
<p>For any $p \in \M$ and for any $v \in T_p \M$, the gradient satisfies</p>
<script type="math/tex; mode=display">\inner{\grad{f}, v}_g = vf \, .</script>
<p>That is, for each $p \in \M$ and for any $v \in T_p \M$, $\grad{f}$ is a vector in $T_p \M$ such that the inner product with $v$ is the derivation of $f$ by $v$. Observe the compatibility of this definition with standard multi-variable calculus: the directional derivative of a function in the direction of a vector is the dot product of its gradient and that vector.</p>
<p>In any smooth coordinate $\{x^i\}$, $\grad{f}$ has the expression</p>
<script type="math/tex; mode=display">\grad{f} = g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} \, .</script>
<p><strong>Example 9 (Euclidean gradient).</strong> On $\R^n$ with the Euclidean metric with the standard coordinate, the gradient of $f: \R^n \to \R$ is</p>
<script type="math/tex; mode=display">\grad{f} = \delta^{ij} \, \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} = \sum_{i=1}^n \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^i} \, .</script>
<p>Thus, again it is coincide with the definition we are familiar with form calculus.</p>
<p class="right">//</p>
<p>All in all then, given a basis, in matrix notation, let $G$ be the matrix representation of $g$ and let $d$ be the matrix representation of $df$ (i.e. as a row vector containing all partial derivatives of $f$), then: $\grad{f} = G^{-1} d^\T$.</p>
<p>The interpretation of the gradient in Riemannian manifold is analogous to the one in Euclidean space: its direction is the direction of steepest ascent of $f$ and it is orthogonal to the level sets of $f$; and its length is the maximum directional derivative of $f$ in any direction.</p>
<h2 class="section-heading">Connections</h2>
<p>Let $(\M, g)$ be a Riemannian manifold and let $X, Y: \M \to T \M$ be a vector field. Applying the usual definition for directional derivative, the way we differentiate $X$ is by</p>
<script type="math/tex; mode=display">D_X \vert_p Y = \lim_{h \to 0} \frac{Y_{p+hX_p} - Y_p}{h} \, .</script>
<p>However, we will have problems: We have not defined what this expression $p+hX_p$ means. Furthermore, as $Y_{p+hX_p}$ and $Y_p$ live in different vector spaces $T_{p+hX_p} \M$ and $T_p \M$, it does not make sense to subtract them, unless there is a natural isomorphism between each $T_p \M$ and $\M$ itself, as in Euclidean spaces. Hence, we need to add an additional structure, called <strong><em>connection</em></strong> that allows us to compare different tangent vectors from different tangent spaces of nearby points.</p>
<p>Specifically, we define the <strong><em>affine connection</em></strong> to be a connection in the tangent bundle of $\M$. Let $\mathfrak{X}(\M)$ be the space of vector fields on $\M$; $X, Y, Z \in \mathfrak{X}(\M)$; $f, g \in C^\infty(\M)$; and $a, b \in \R$. The affine connection is given by the map</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\nabla: \mathfrak{X}(\M) \times \mathfrak{X}(\M) &\to \mathfrak{X}(\M) \\
(X, Y) &\mapsto \nabla_X Y \, ,
\end{align} %]]></script>
<p>which satisfies the following properties</p>
<ol>
<li>$C^\infty(\M)$-linearity in $X$, i.e., $\nabla_{fX+gY} Z = f \, \nabla_X Z + g \, \nabla_Y Z$</li>
<li>$\R$-linearity in Y, i.e., $\nabla_X (aY + bZ) = a \, \nabla_X Y + b \, \nabla_X Z$</li>
<li>Leibniz rule, i.e., $\nabla_X (fY) = (Xf) Y + f \, \nabla_X Y$ .</li>
</ol>
<p>We call $\nabla_X Y$ the <strong><em>covariant derivative</em></strong> of $Y$ in the direction $X$. Note that the notation $Xf$ means $Xf(p) := D_{X_p} \vert_p f$ for all $p \in \M$, i.e. the directional derivative (it is a scalar field). Furthermore, notice that, covariant derivative and connection are the same thing and they are useful to generalize the notion of directional derivative to vector fields.</p>
<p>In any smooth local frame $(E_i)$ in $T \M$ on an open subset $U \in \M$, we can expand the vector field $\nabla_{E_i} E_j$ in terms of this frame</p>
<script type="math/tex; mode=display">\nabla_{E_i} E_j = \Gamma^k_{ij} E_k \,.</script>
<p>The $n^3$ smooth functions $\Gamma^k_{ij}: U \to \R$ is called the <strong><em>connection coefficients</em></strong> or the <strong><em>Christoffel symbols</em></strong> of $\nabla$.</p>
<p><strong>Example 10 (Covariant derivative in Euclidean spaces).</strong> Let $\R^n$ with the Euclidean metric be a Riemannian manifold. Then</p>
<script type="math/tex; mode=display">(\nabla_Y X)_p = \lim_{h \to 0} \frac{Y_{p+hX_p} - Y_p}{h} \enspace \enspace \forall p \in \M \, ,</script>
<p>the usual directional derivative, is a covariant derivative.</p>
<p class="right">//</p>
<p>There exists a unique affine connection for every Riemannian manifold $(\M, g)$ that satisfies</p>
<ol>
<li>Symmetry, i.e., $\nabla_X Y - \nabla_Y X = [X, Y]$</li>
<li>Metric compatible, i.e., $Z \inner{X, Y}_g = \inner{\nabla_Z X, Y}_g + \inner{X, \nabla_Z Y}_g$,</li>
</ol>
<p>for all $X, Y, Z \in \mathfrak{X}(\M)$. It is called the <strong><em>Levi-Civita connection</em></strong>. Note that, $[\cdot, \cdot]$ is the <strong>Lie bracket</strong>, defined by $[X, Y]f = X(Yf) - Y(Xf)$ for all $f \in C^\infty(\M)$. Note also that, the connection shown in Example 10 is the Levi-Civita connection for Euclidean spaces with the Euclidean metric.</p>
<h2 class="section-heading">Riemannian Hessians</h2>
<p>Let $(\M, g)$ be a Riemannian manifold equipped by the Levi-Civita connection $\nabla$. Given a scalar field $f: \M \to \R$ and any $X, Y \in \mathfrak{X}(\M)$, the <strong><em>Riemannian Hessian</em></strong> of $f$ is the covariant 2-tensor field $\text{Hess} \, f := \nabla^2 f := \nabla \nabla f$, defined by</p>
<script type="math/tex; mode=display">\text{Hess} \, f(X, Y) := X(Yf) - (\nabla_X Y)f = \inner{\nabla_X \, \grad{f}, Y}_g \, .</script>
<p>Another way to define Riemannian Hessian is to treat is a linear map $T_p \M \to T_p \M$, defined by</p>
<script type="math/tex; mode=display">\text{Hess}_{v} \, f = \nabla_v \, \grad{f} \, ,</script>
<p>for every $p \in \M$ and $v \in T_p \M$.</p>
<p>In any local coordinate $\{x^i\}$, it is defined by</p>
<script type="math/tex; mode=display">\text{Hess} \, f = f_{; i,j} \, dx^i \otimes dx^j := \left( \frac{\partial f}{\partial x^i \partial x^j} - \Gamma^k_{ij} \frac{\partial f}{\partial x^k} \right) \, dx^i \otimes dx^j \, .</script>
<p><strong>Example 11 (Euclidean Hessian).</strong> Let $\R^n$ be a Euclidean space with the Euclidean metric and standard Euclidean coordinate. We can show that connection coefficients of the Levi-Civita connection are all $0$. Thus the Hessian is defined by</p>
<script type="math/tex; mode=display">\text{Hess} \, f = \left( \frac{\partial f}{\partial x^i \partial x^j} \right) \, dx^i \otimes dx^j \, .</script>
<p>It is the same Hessian as we have seen in calculus.</p>
<p class="right">//</p>
<h2 class="section-heading">Geodesics</h2>
<p>Let $(\M, g)$ be a Riemannian manifold and let $\nabla$ be a connection on $T\M$. Given a smooth curve $\gamma: I \to \M$, a <strong><em>vector field along $\gamma$</em></strong> is a smooth map $V: I \to T\M$ such that $V(t) \in T_{\gamma(t)}\M$ for every $t \in I$. We denote the space of all such vector fields $\mathfrak{X}(\gamma)$. A vector field $V$ along $\gamma$ is said to be <strong><em>extendible</em></strong> if there exists another vector field $\tilde{V}$ on a neighborhood of $\gamma(I)$ such that $V = \tilde{V} \circ \gamma$.</p>
<p>For each smooth curve $\gamma: I \to \M$, the connection determines a unique operator</p>
<script type="math/tex; mode=display">D_t: \mathfrak{X}(\gamma) \to \mathfrak{X}(\gamma) \, ,</script>
<p>called the <strong><em>covariant derivative along $\gamma$</em></strong>, satisfying (i) linearity over $\R$, (ii) Leibniz rule, and (iii) if it $V \in \mathfrak{X}(\gamma)$ is extendible, then for all $\tilde{V}$ of $V$, we have that $ D_t V(t) = \nabla_{\gamma’(t)} \tilde{V}$.</p>
<p>For every smooth curve $\gamma: I \to \M$, we define the <strong><em>acceleration</em></strong> of $\gamma$ to be the vector field $D_t \gamma’$ along $\gamma$. A smooth curve $\gamma$ is called a <strong><em>geodesic</em></strong> with respect to $\nabla$ if its acceleration is zero, i.e. $D_t \gamma’ = 0 \enspace \forall t \in I$. In term of smooth coordinates $\{x^i\}$, if we write $\gamma$ in term of its components $\gamma(t) := \{x^1(t), \dots, x^n(t) \}$, then it follows that $\gamma$ is a geodesic if and only if its component functions satisfy the following <strong><em>geodesic equation</em></strong>:</p>
<script type="math/tex; mode=display">\ddot{x}^k(t) + \dot{x}^i(t) \, \dot{x}^j(t) \, \Gamma^k_{ij}(x(t)) = 0 \, ,</script>
<p>where we use $x(t)$ as an abbreviation for $\{x^1(t), \dots, x^n(t)\}$. Observe that, this gives us a hint that to compute a geodesic we need to solve a system of second-order ODE for the real-valued functions $x^1, \dots, x^n$.</p>
<p>Suppose $\gamma: [a, b] \to \M$ is a smooth curve segment with domain in the interval $[a, b]$. The <strong><em>length</em></strong> of $\gamma$ is</p>
<script type="math/tex; mode=display">L_g (\gamma) := \int_a^b \norm{\gamma'(t)}_g \, dt \, ,</script>
<p>where $\gamma’$ is the derivative (the velocity vector) of $\gamma$. We can then use curve segments as “measuring tapes” to measure the <strong><em>Riemannian distance</em></strong> from $p$ to $q$ for any $p, q \in \M$$</p>
<script type="math/tex; mode=display">d_g(p, q) := \inf \, \{L_g(\gamma) \, \vert \, \gamma: [a, b] \to \M \enspace \text{s.t.} \enspace \gamma(a) = p, \, \gamma(b) = q\} \, ,</script>
<p>over all curve segments $\gamma$ which have endpoints at $p$ and $q$. We call the particular $\gamma$ such that $L_g(\gamma) = d_g(p, q)$ as the <strong><em>length-minimizing curve</em></strong>. We can show that all geodesics are locally length-minimizing, and all length-minimizing curves are geodesics.</p>
<h2 class="section-heading">Parallel transport</h2>
<p>Let $(\M, g)$ be a Riemannian manifold with affine connection $\nabla$. A smooth vector field $V$ along a smooth curve $\gamma: I \to \M$ is said to be <strong><em>parallel</em></strong> along $\gamma$ if $D_t V = 0$ for all $t \in I$. Notice that a geodesic can then be said to be a curve whose velocity vector field is parallel along the curve.</p>
<p>Given $t_0 \in I$ and $v \in T_{\gamma(t_0)} \M$, we can show there exists a unique parallel vector field $V$ along $\gamma$ such that $V(t_0) = v$. This vector field is called the <strong><em>parallel transport</em></strong> of $v$ along $\gamma$. Now, for each $t_0, t_1 \in I$, we define a map</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
&P^\gamma_{t_0 t_1} : T_{\gamma(t_0)} \M \to T_{\gamma(t_1)} \M \\
&P^\gamma_{t_0 t_1}(v) = V(t_1) \, ,
\end{align} %]]></script>
<p>called the <strong><em>parallel transport map</em></strong>. We can picture the concept of parallel transport by imagining that we are “sliding” a tangent vector $v$ along $\gamma$ such that the direction and the magnitude of $v$ is preserved.</p>
<p>Note that, the parallel transport map is a linear map with inverse $P^\gamma_{t_1 t_0}$, hence it is an isomorphism between two tangent spaces $T_{\gamma(t_0)} \M$ and $T_{\gamma(t_1)} \M$. We can therefore determine the covariant derivative along $\gamma$ using parallel transport:</p>
<script type="math/tex; mode=display">D_t V(t_0) = \lim_{t_1 \to t_0} \frac{P^\gamma_{t_1 t_0} \, V(t_1) - V(t_0)}{t_1 - t_0} \, ,</script>
<p>Moreover, we can also determine the connection $\nabla$ via parallel transport:</p>
<script type="math/tex; mode=display">\nabla_X Y \, \vert_p = \lim_{h \to 0} \frac{P^\gamma_{h 0} Y_{\gamma(h)} - Y_p}{h} \, ,</script>
<p>for every $p \in \M$.</p>
<p>Finally, if $A$ is a smooth vector field on $\M$, then $A$ is parallel on $\M$ if and only if $\nabla A = 0$.</p>
<h2 class="section-heading">The exponential map</h2>
<p>Geodesics with proportional initial velocities are related in a simple way. Let $(\M, g)$ be a Riemannian manifold equipped with the Levi-Civita connection. For every $p \in \M$, $v \in T_p \M$, and $c, t \in \R$,</p>
<script type="math/tex; mode=display">\gamma_{cv} (t) = \gamma_{v} (ct) \, ,</script>
<p>whenever either side is defined. This fact is compatible with our intuition on how speed and time are related to distance.</p>
<p>From the fact above, we can define a map from the tangent bundle to $\M$ itself, which sends each line through the origin in $T_p \M$ to a geodesic. Define a subset $\mathcal{E} \subseteq T\M$, the <strong><em>domain of the exponential map</em></strong> by</p>
<script type="math/tex; mode=display">\mathcal{E} := \{ v \in T\M : \gamma_v \text{ is defined on an interval containing } [0, 1] \} \, ,</script>
<p>and then define the <strong><em>exponential map</em></strong></p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
&\text{exp}: \mathcal{E} \to \M \\
&\text{exp}(v) = \gamma_v(1) \, .
\end{align} %]]></script>
<p>For each $p \in \M$, the <strong><em>restricted exponential map</em></strong> at $p$, denoted $\text{exp}_p$ is the restriction of $\text{exp}$ to the set $\mathcal{E}_p := \mathcal{E} \cap T_p \M$.</p>
<p>The interpretation of the (restricted) exponential maps is that, given a point $p$ and tangent vector $v$, we follow a geodesic which has the property $\gamma(0) = p$ and $\gamma’(0) = v$. This is then can be seen as the generalization of moving around the Euclidean space by following straight line in the direction of velocity vector.</p>
<h2 class="section-heading">Curvature</h2>
<p>Let $(\M, g)$ be a Riemannian manifold. Recall that an <strong><em>isometry</em></strong> is a map that preserves distance. Now, $\M$ is said to be <strong><em>flat</em></strong> if it is locally isometric to a Euclidean space, that is, every point in $\M$ has a neighborhood that is isometric to an open set in $\R^n$. We say that a connection $\nabla$ on $\M$ satisfies the <strong><em>flatness criterion</em></strong> if whenever $X, Y, Z$ are smooth vector fields defined on an open subset of $\M$, the following identity holds:</p>
<script type="math/tex; mode=display">\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z = \nabla_{[X, Y]} Z \, .</script>
<p>Furthermore, we can show that $(\M, g)$ is a flat Riemannian manifold, then its Levi-Civita connection satisfies the flatness criterion.</p>
<p><strong>Example 12 (Euclidean space is flat).</strong> Let $\R^n$ with the Euclidean metric be a Riemannian manifold, equipped with the Euclidean connection $\nabla$. Then, given $X, Y, Z$ smooth vector fields:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\nabla_X \nabla_Y Z &= \nabla_X (Y(Z^k) \partial_k) = XY(Z^k) \partial_k \\
\nabla_Y \nabla_X Z &= \nabla_Y (X(Z^k) \partial_k) = YX(Z^k) \partial_k \, .
\end{align} %]]></script>
<p>The difference between them is</p>
<script type="math/tex; mode=display">(XY(Z^k) - YX(Z^k)) \partial_k = \nabla_{[X, Y]}Z \, ,</script>
<p>by definition. Thus</p>
<script type="math/tex; mode=display">\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z = \nabla_{[X, Y]}Z \, .</script>
<p>Therefore, the Euclidean space with the Euclidean connection (which is the Levi-Civita connection on Euclidean space) is flat.</p>
<p class="right">//</p>
<p>Based on the above definition of the flatness criterion, then we can define a measure on how far away a manifold to be flat:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
&R: \mathfrak{X}(\M) \times \mathfrak{X}(\M) \times \mathfrak{X}(\M) \to \mathfrak{X}(\M) \\
&R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z \, ,
\end{align} %]]></script>
<p>which is a multilinear map over $C^\infty (\M)$, and is therefore a $(1, 3)$-tensor field on $\M$.</p>
<p>We can then define a covariant 4-tensor called the <strong><em>(Riemann) curvature tensor</em></strong> to be the $(0, 4)$-tensor field $Rm := R^\flat$, by lowering the contravariant index of $R$. Its action on vector fields is given by</p>
<script type="math/tex; mode=display">Rm(X, Y, Z, W) := \inner{R(X, Y)Z, W}_g \, .</script>
<p>In any local coordinates, it is written</p>
<script type="math/tex; mode=display">Rm = R_{ijkl} \, dx^i \otimes dx^j \otimes dx^k \otimes dx^l \, ,</script>
<p>where $R_{ijkl} = g_{lm} \, {R_{ijkl}}^m$. We can show that $Rm$ is a local isometry invariant. Furthermore, compatible with our intuition of the role of the curvature tensor, a Riemannian manifold is flat if and only if its curvature tensor vanishes identically.</p>
<p>Working with $4$-tensors are complicated, thus we want to construct simpler tensors that summarize some of the information contained in the curvature tensor. For that, first we need to define the trace operator for tensors. Let $T^{(k,l)}(V)$ denotes the space of tensors with $k$ covariant and $l$ contravariant components of a vector space $V$, the trace operator is:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
&\text{tr}: T^{(k+1, l+1)}(V) \to T^{(k,l)}(V) \\
&(\text{tr} \, F)(\omega^1, \dots, \omega^k, v_1, \dots, v_l) = \text{tr}(F(\omega^1, \dots, \omega^k, \cdot, v_1, \dots, v_l, \cdot)) \, ,
\end{align} %]]></script>
<p>where the trace operator in the right hand side is the usual trace operator, as $F(\omega^1, \dots, \omega^k, \cdot, v_1, \dots, v_l, \cdot) \in T^{(1,1)}(V)$ is a $(1,1)$-tensor, which can be represented by a matrix. We can extend this operator to covariant tensors in Riemannian manifolds: If $h$ is any covariant $k$-tensor field with $k \geq 2$, we can raise one of its indices and obtain $(1, k-1)$-tensor $h^\sharp$. The trace of $h^\sharp$ is thus a covariant $(k-2)$-tensor field. All in all, we define the <strong><em>trace</em></strong> of $h$ w.r.t. $g$ as</p>
<script type="math/tex; mode=display">\text{tr}_g \, h := \text{tr}(h^\sharp) \, .</script>
<p>In coordinates, it is</p>
<script type="math/tex; mode=display">\text{tr}_g \, h = {h_i}^i = g^{ij} h_{ij} \, ,</script>
<p>which, in an orthonormal frame, it is given by the ordinary trace of the matrix $(h_{ij})$.</p>
<p>We now define the <strong><em>Ricci curvature</em></strong> or <strong><em>Ricci tensor</em></strong> $Rc$ which is the covariant 2-tensor field defined as follows:</p>
<script type="math/tex; mode=display">Rc(X, Y) := \text{tr}(Z \mapsto R(Z, X)Y) \, ,</script>
<p>for any vector fields $X, Y$. In local coordinates, its components are</p>
<script type="math/tex; mode=display">R_{ij} := {R_{kij}}^k = g^{km} \, R_{kijm} \, .</script>
<p>We can simplify it further: We define the <strong><em>scalar curvature</em></strong> to be the function $S$ to be the trace of the Ricci tensor:</p>
<script type="math/tex; mode=display">S := \text{tr}_g \, Rc = {R_i}^i = g^{ij} \, R_{ij} \, .</script>
<p>Thus the scalar curvature is a scalar field on $\M$.</p>
<h2 class="section-heading">Submanifolds</h2>
<p>Let $\M$ be a smooth manifold. An <strong><em>embedded or regular submanifold</em></strong> of $\M$ is a subset $\mathcal{S} \subset \M$ that is a manifold in the subspace topology, endowed with a smooth structure w.r.t. which the inclusion map $\mathcal{S} \hookrightarrow \M$ is a smooth embedding. We call the difference $\text{dim} \, \M - \text{dim} \, \mathcal{S}$ to be the <strong><em>codimension</em></strong> of $\mathcal{S}$ in $\M$, and $\M$ to be the <strong><em>ambient manifold</em></strong>. An <strong><em>embedded hypersurface</em></strong> is an embedded submanifold of codimension 1.</p>
<p><strong>Example 13 (Graphs as submanifolds).</strong> Suppose $\M$ is a smooth $m$-manifold, $\mathcal{N}$ is a smooth $n$-manifold, $U \subset \M$ is open, and $f: U \to \mathcal{N}$ is a smooth map. Let $\Gamma(f) \subseteq \M \times \mathcal{N}$ denote the graph of $f$, i.e.</p>
<script type="math/tex; mode=display">\Gamma(f) := \{ (x, y) \in \M \times \mathcal{N} : x \in U, y = f(x) \} \, .</script>
<p>Then $\Gamma(f)$ is an embedded $m$-submanifold of $\M \times \mathcal{N}$.</p>
<p>Furthermore, if $f: \M \to \mathcal{N}$ is a smooth map (notice that we have defined $f$ globally here), then $\Gamma(f)$ is <strong><em>properly embedded</em></strong> in $\M \times \mathcal{N}$, i.e. the inclusion map is a <a href="https://en.wikipedia.org/wiki/Proper_map">proper map</a>.</p>
<p class="right">//</p>
<p>Suppose $\M$ and $\N$ are smooth manifolds. Let $F: \M \to \N$ be a smooth map and $p \in \M$. We define the rank of $F$ at $p$ to be the <strong><em>rank</em></strong> of the linear map $dF_p: T_p\M \to T_{F(p)\N}$, i.e. the rank of the Jacobian matrix of $F$ in coordinates. If $F$ has the same rank $r$ at any point, we say that it has <strong><em>constant rank</em></strong>, written $\rank{F} = r$. Note that it is bounded by $\min \{ \dim{\M}, \dim{\N} \}$ and if it is equal to this bound, we say $F$ has <strong><em>full rank</em></strong> at $p$.</p>
<p>A smooth map $F: \M \to \N$ is called a <strong><em>smooth submersion</em></strong> if $dF$ is surjective at each point ($\rank{F} = \dim{\N}$). It is called a <strong><em>smooth immersion</em></strong> if $dF$ is injective at each point ($\rank{F} = \dim{\M}$).</p>
<p><strong>Example 14 (Submersions and immersions).</strong></p>
<ol>
<li>Suppose $\M_1, \dots, \M_k$ are smooth manifolds. Then each projection maps $\pi_i: \M_1 \times \dots \times \M_k \to \M_i$ is a smooth submersion. In particular $\pi: \R^{n+k} \to \R^n$ is a smooth submersion.</li>
<li>If $\gamma: I \to \M$ is a smooth curve in a smooth manifold $\M$, then $\gamma$ is a smooth immersion if and only if $\gamma’(t) \neq 0$ for all $t \in I$.</li>
</ol>
<p class="right">//</p>
<p>If $\M$ and $\N$ are smooth manifolds. A <strong><em>diffeomorphism</em></strong> from $\M$ to $\N$ is a smooth bijective map $F: \M \to \N$ that has a smooth inverse, and $\M$ and $\N$ are said to be <strong><em>diffeomorphic</em></strong>. $F$ is called a <strong><em>local diffeomorphism</em></strong> if every point $p \in \M$ has a neighborhood $U$ such that $F(U)$ is open in $\N$ and $F\vert_U: U \to F(U)$ is a diffeomorphism. We can show that $F$ is a local diffeomorphism if and only if it is both a smooth immersion and submersion. Furthermore, if $\dim{\M} = \dim{\N}$ and $F$ is either a smooth immersion or submersion, then it is a local diffeomorphism.</p>
<p>The <em>Global rank theorem</em> says that if $\M$ and $\N$ are smooth manifolds, and suppose $F: \M \to \N$ is a smooth map of constant rank, then it is (a) a smooth submersion if it is injective, (b) a smooth immersion if it is injective, and (c) a diffeomorphism if it is bijective.</p>
<p>If $\M$ and $\N$ are smooth manifolds, a <strong><em>smooth embedding</em></strong> of $\M$ into $\N$ is a smooth immersion $F: \M \to \N$ that is also a topological embedding (homeomorphism onto its image in the subspace topology).</p>
<p><strong>Example 15 (Smooth embeddings).</strong> If $\M$ is a smooth manifold and $U \subseteq \M$ is an open submanifold, the inclusion $U \hookrightarrow \M$ is a smooth embedding.</p>
<p class="right">//</p>
<p>Let $F: \M \to \N$ be an injective smooth immersion. If any of these condition holds, then $F$ is a smooth embedding: (a) $F$ is an open or closed map, (b) $F$ is a proper map, (c) $\M$ is compact, and (d) $\M$ has empty boundary and $\dim{\M} = \dim{\N}$.</p>
<h2 class="section-heading">The second fundamental form</h2>
<p>Let $(\M, g)$ be a Riemannian submanifold of a Riemannian manifold $(\tilde{\M}, \tilde{g})$. Then, $g$ is the induced metric $g = \iota_\M^* \tilde{g}$, where $\iota_\M: \M \hookrightarrow \tilde{\M}$ is the inclusion map. Note that, the expression $\iota^*_\M \tilde{g}$ is called the <strong><em>pullback metric</em></strong> or the <strong><em>induced metric</em></strong> of $\tilde{g}$ by $\iota_\M$ and is defined by</p>
<script type="math/tex; mode=display">\iota_\M^* \tilde{g}(u, v) := \tilde{g}(d\iota_\M(u), d\iota_\M(v)) \, ,</script>
<p>for any $u, v \in T_p \M$. Also, recall that $d\iota_\M$ is the pushforward (tangent map) by $\iota_\M$. Intuitively, we map the tangent vectors $u, v$ of $T_p \M$ to some tangent vectors of $T_{\iota_\M(p)} \tilde{\M}$ and use $\tilde{g}$ as the metric.</p>
<p>In this section, we will denote any geometric object of the ambient manifold with tilde, e.g. $\tilde{\nabla}, \tilde{Rm}$, etc. Note also that, we can use the inner product notation $\inner{u, v}$ to refer to $g$ or $\tilde{g}$, since $g$ is just the restriction of $\tilde{g}$ to pairs of tangent vectors in $T \M$.</p>
<p>We would like to compare the Levi-Civita connection of $\M$ with that of $\tilde{\M}$. First, we define orthogonal projection maps, called <strong><em>tangential</em></strong> and <strong><em>normal projections</em></strong> by</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\pi^\top &: T \tilde{\M} \vert_\M \to T\M \\
\pi^\perp &: T \tilde{\M} \vert_\M \to N\M \, ,
\end{align} %]]></script>
<p>where $N\M$ is the <strong><em>normal bundle</em></strong> of $\M$, i.e. the set of all vectors normal to $\M$. If $X$ is a section of $T\tilde{\M}\vert_\M$, we use the shorthand notations $X^\top = \pi^\top X$ and $X^\perp = \pi^\perp X$.</p>
<p>Given $X, Y \in \mathfrak{X}(\M)$, we can extend them to vector fields on an open subset of $\tilde{\M}$, apply the covariant derivative $\tilde{\nabla}$, and then decompose at $p \in \M$ to get</p>
<script type="math/tex; mode=display">\tilde{\nabla}_X Y = (\tilde{\nabla}_X Y)^\top + (\tilde{\nabla}_X Y)^\perp \, .</script>
<p>Let $\Gamma(E)$ be the space of smooth sections of bundle $E$. For the second part, we define the <strong><em>second fundamental form</em></strong> of $\M$ to be a map $\two: \mathfrak{X}(\M) \times \mathfrak{X}(\M) \to \Gamma(N\M)$ defined by</p>
<script type="math/tex; mode=display">\two(X, Y) = (\tilde{\nabla}_X Y)^\perp \, .</script>
<p>Meanwhile, we can show that, the first part is the covariant derivative w.r.t. the Levi-Civita connection of the induced metric on $\M$. All in all, the above equation can be written as the <strong><em>Gauss formula</em></strong>:</p>
<script type="math/tex; mode=display">\tilde{\nabla}_X Y = \nabla_X Y + \two(X, Y) \, .</script>
<p>The second fundamental form can also be used to evaluate extrinsic covariant derivatives of <em>normal</em> vector fields (instead of <em>tangent</em> ones above). For each normal vector field $N \in \Gamma(N\M)$, we define a scalar-valued symmetric bilinear form $\two_N: \mathfrak{X}(\M) \times \mathfrak{X}(\M) \to \R$ by</p>
<script type="math/tex; mode=display">\two_N(X, Y) = \inner{N, \two(X, Y)} \, .</script>
<p>Let $W_N: \mathfrak{X}(\M) \to \mathfrak{X}(\M)$ denote the self-adjoint linear map associated with this bilinear form, characterized by</p>
<script type="math/tex; mode=display">\inner{W_N(X), Y} = \two_N(X, Y) = \inner{N, \two(X, Y)} \, .</script>
<p>The map $W_N$ is called the <strong><em>Weingarten map</em></strong> in the direction of $N$. Furthermore we can show that the equation $(\tilde{\nabla}_X N)^\top = -W_N(X)$ holds and is called the <strong><em>Weingarten equation</em></strong>.</p>
<p>In addition to describing the difference between the intrinsic and extrinsic connections, the second fundamental form describes the difference between the curvature tensors of $\tilde{\M}$ and $\M$. The explicit formula is called the <strong><em>Gauss equation</em></strong> and is given by</p>
<script type="math/tex; mode=display">\tilde{Rm}(W, X, Y, Z) = Rm(W, X, Y, Z) - \inner{\two(W, Z), \two(X, Y)} + \inner{\two(W, Y), \two(X, Z)} \, .</script>
<p>To give a geometric interpretation of the second fundamental form, we study the curvatures of curves. Let $\gamma: I \to \M$ be a smooth unit-speed curve. We define the <strong><em>curvature</em></strong> of $\gamma$ as the length of the acceleration vector field, i.e. the function $\kappa: I \to \R$ given by $\kappa(t) := \norm{D_t \gamma’(t)}$. We can see this curvature of the curve as a quantitative measure of how far the curve deviates from being a geodesic. Note that, if $\M = \R^n$ the curvature agrees with the one defined in calculus.</p>
<p>Now, suppose that $\M$ is a submanifold in the ambient manifold $\tilde{\M}$. Every regular curve $\gamma: I \to \M$ has two distinct curvature: its <strong><em>intrinsic curvature</em></strong> $\kappa$ as a curve in $\M$ and its <strong><em>extrinsic curvature</em></strong> $\tilde{\kappa}$ as a curve in $\tilde{\M}$. The second fundamental form can then be used to compute the relationship between the two: For $p \in \M$ and $v \in T_p \M$, (i) $\two(v, v)$ is the $\tilde{g}$-acceleration at $p$ of the $g$-geodesic $\gamma_v$, and (ii) if $v$ is a unit vector, then $\norm{\two(v, v)}$ is the $\tilde{g}$-curvature of $\gamma_v$ at $p$.</p>
<p>The intrinsic and extrinsic accelerations of a curve are usually different. A Riemannian submanifold $(\M, g)$ of $(\tilde{\M}, \tilde{g})$ is said to be <strong><em>totally geodesic</em></strong> if every $\tilde{g}$-geodesic that is tangent to $\M$ at some time $t_0$ stays in $\M$ for all $t \in (t_0 - \epsilon, t_0 + \epsilon)$.</p>
<h2 class="section-heading">Riemannian hypersurfaces</h2>
<p>We focus on the case when $(\M, g)$ is an embedded $n$-dimensional Riemannian submanifold of an $(n+1)$-dimensional Riemannian manifold $(\tilde{\M}, \tilde{g})$. That is, $\M$ is a hypersurface of $\tilde{\M}$.</p>
<p>In this situation, at each point of $\M$, there are exactly two unit normal vectors. We choose one of these normal vector fields and call it $N$. We can replace the vector-valued second fundamental form above by a simpler scalar-valued form. The <strong><em>scalar second fundamental form</em></strong> of $\M$ is the symmetric covariant $2$-tensor field $h = \two_N$, i.e.</p>
<script type="math/tex; mode=display">h(X, Y) := \inner{N, \two(X, Y)} \enspace \enspace \enspace \text{for all } X, Y \in \mathfrak{X}(\M) \, .</script>
<p>By the Gauss formula $\tilde{\nabla}_X Y = \nabla_X Y + \two(X, Y)$ and noting that $\nabla_X Y$ is orthogonal to $N$, we can rewrite the definition as $h(X, Y) = \inner{N, \tilde{\nabla}_X Y}$. Furthermore, since $N$ is a unit vector spanning $N\M$, we can write $\two(X, Y) = h(X, Y)N$. Note that the sign of $h$ depends on the normal vector field chosen.</p>
<p>The choice of $N$ also determines a Weingarten map $W_N: \mathfrak{X}(\M) \to \mathfrak{X}(\M)$. In this special case of a hypersurface, we use the notation $s = W_N$ and call it the <strong><em>shape operator</em></strong> of $\M$. We can think of $s$ as the $(1, 1)$-tensor field on $\M$ obtained from $h$ by raising an index. It is characterized by</p>
<script type="math/tex; mode=display">\inner{sX, Y} = h(X, Y) \enspace \enspace \enspace \text{for all } X, Y \in \mathfrak{X}(\M) \, .</script>
<p>As with $h$, the choice of $N$ determines the sign of $s$.</p>
<p>Note that at every $p \in \M$, $s$ is a self-adjoint linear endomorphism of the tangent space $T_p \M$. Let $v \in T_p \M$. From linear algebra, we know that there is a unit vector $v_0 \in T_p \M$ such that $v \mapsto \inner{sv, v}$ achieve its maximum among all unit vectors. Every such vector is an eigenvector of $s$ with eigenvalue $\lambda_0 = \inner{s v_0, v_0}$. Furthermore, $T_p \M$ has an orthonormal basis $(b_1, \dots, b_n)$ formed by the eigenvectors of $s$ and all of the eigenvalues $(\kappa_1, \dots \kappa_n)$ are real. (Note that this means for each $i$, $s b_i = \kappa_i b_i)$.) In this basis, both $h$ and $s$ are represented by diagonal matrices.</p>
<p>The eigenvalues of $s$ at $p \in \M$ are called the <strong><em>principal curvatures</em></strong> of $\M$ at $p$, and the corresponding eigenvectors are called the <strong><em>principal directions</em></strong>. Note that the sign of the principal curvatures depend on the choice of $N$. But otherwise both the principal curvatures and directions are independent of the choice of coordinates.</p>
<p>From the principal curvatures, we can compute other quantities: The <strong><em>Gaussian curvature</em></strong> which is defined as $K := \text{det}(s)$ and the <strong><em>mean curvature</em></strong> $H := (1/n) \text{tr}(s)$. In other words, $K = \prod_i \kappa_i$ and $H = (1/n) \sum_i \kappa_i$, since $s$ can be represented by a symmetric matrix.</p>
<p>The Gaussian curvature, which is a local isometric invariant, is connected to a global topological invariant, the <a href="https://en.wikipedia.org/wiki/Euler_characteristic">Euler characteristic</a>, through the <strong><em>Gauss-Bonnet theorem</em></strong>. Let $(\M, g)$ be a smoothly triangulated compact Riemannian 2-manifold, then</p>
<script type="math/tex; mode=display">\int_\M K \, dA = 2 \pi \, \chi(\M) \, ,</script>
<p>where $dA$ is its Riemannian density.</p>
<h2 class="section-heading">Hypersurfaces of Euclidean space</h2>
<p>Assume that $\M \subseteq \R^{n+1}$ is an embedded Riemannian $n$-submanifold (with the induced metric from the Euclidean metric). We denote geometric objects on $\R^{n+1}$ with bar, e.g. $\bar{g}$, $\overline{Rm}$, etc. Observe that $\overline{Rm} \equiv 0$, which implies that the Riemann curvature tensor of a hypersurface in $\R^{n+1}$ is completely determined by the second fundamental form.</p>
<p>In this setting we can give some very concrete geometric interpretation about quantities in hypersurfaces. First is for curves. For every $v \in T_p \M$, let $\gamma = \gamma_v : I \to \M$ be the $g$-geodesic in $\M$ with initial velocity $v$. The Gauss formula shows that the Euclidean acceleration of $\gamma$ at $0$ is $\gamma^{\prime\prime}(0) = \overline{D}_t \gamma’(0) = h(v, v)N_p$, thus $\norm{h(v, v)}$ is the Euclidean curvature of $\gamma$ at $0$. Furthermore, $h(v,v) = \inner{\gamma^{\prime\prime}(0), N_p} > 0$ iff. $\gamma^{\prime\prime}(0)$ points in the same direction as $N_p$. That is $h(v, v)$ is positive if $\gamma$ is curving in the direction of $N_p$ and negative if it is curving away from $N_p$.</p>
<p>We can show that the above Euclidean curvature can be interpreted in terms f the radius of the “best circular approximation”, just in Calculus. Suppose $\gamma: I \to \R^m$ is a unit-speed curve, $t_0 \in I$, and $\kappa(t_0) \neq 0$. We define a unique unit-speed parametrized circle $c: \R \to \R^m$ as the <strong><em>osculating circle</em></strong> at $\gamma(t_0)$, with the property that $c$ and $\gamma$ have the same position, velocity, and acceleration at $t=t_0$. Then, the Euclidean curvature of $\gamma$ at $t_0$ is $\kappa(t_0) = 1/R$ where $R$ is the radius of the osculating circle.</p>
<p>As mentioned before, to compute the curvature of a hypersurface in Euclidean space, we can compute the second fundamental form. Suppose $X: U \to \M$ is a smooth local parametrization of $\M$, $(X_1, \dots, X_n)$ is the local frame for $T \M$ determined by $X$, and $N$ is a unit normal field on $\M$. Then, the scalar second fundamental form is given by</p>
<script type="math/tex; mode=display">h(X_i, X_j) = \innerbig{\frac{\partial^2 X}{\partial u^i \partial u^j}, N} \, .</script>
<p>The implication of this is that it shows how the principal curvatures give a concise description of the local shape of the hypersurface by approximating the surface with the graph of a quadratic function. That is, we can show that there is an isometry $\phi: \R^{n+1} \to \R^{n+1}$ that takes $p \in \M$ to the origin and takes a neighborhood of it to a graph of the form $x^{n+1} = f(x^1, \dots, x^n)$, where</p>
<script type="math/tex; mode=display">f(x) = \frac{1}{2} \sum_{i=1}^n\kappa_i (x^i)^2 + O(\abs{x}^3) \, .</script>
<p>We can write down a smooth vector field $N = N^i \partial_i$ on an open subset of $\R^{n+1}$ that restricts to a unit normal vector field along $\M$. Then, the shape operator can be computed straightforwardly using the Weingarten equation and observing that the Euclidean covariant derivatives of $N$ are just ordinary directional derivatives in Euclidean space. Thus, for every vector $X = X^i \partial_j$ tangent to $\M$, we have</p>
<script type="math/tex; mode=display">sX = -\bar{\nabla}_X N = -\sum_{i,j=1}^{n+1} X^j (\partial_j N^i) \partial_i \, .</script>
<p>One common way to get such smooth vector field is to work with a local defining function $F$ for $\M$, i.e. a smooth scalar field defined on some open subset $U \subseteq \R^{n+1}$ s.t. $U \cap \M$ is a regular level set of $F$. Then, we can take</p>
<script type="math/tex; mode=display">N = \frac{\grad{F}}{\norm{\grad{F}}} \, .</script>
<p>Because we know that the gradient is always normal to the level set.</p>
<p><strong>Example 16 (Shape operators of spheres).</strong> The function $F: \R^{n+1} \to \R$ with $F(x) := \norm{x}^2$ is a smooth defining function of any sphere in $\mathbb{S}^{n}(R)$. Thus, the normalized gradient vector field</p>
<script type="math/tex; mode=display">N = \frac{1}{R} \sum_{i,j=1}^{n+1} x^i \partial_i</script>
<p>is a (outward pointing) unit normal vector field along $\mathbb{S}^n(R)$. The shape operator is</p>
<script type="math/tex; mode=display">sX = -\frac{1}{R} \sum_{i,j=1}^{n+1} X^j (\partial_j x^i) \partial_i = -\frac{1}{R} X \, ,</script>
<p>where recall that, $\partial_j x^i = \partial x^i / \partial x^j = \delta_{ij}$. We can therefore write $s$ as a matrix $s = (-1/R) \mathbf{I}$ where $\mathbf{I}$ is the identity matrix. The principal curvatures are then all equal to $-1/R$, the mean curvature is $H = -1/R$, and the Gaussian curvature is $K = (-1/R)^n$. Note that, these curvatures are constant. These reflects the fact that the sphere bends the exact same way at every point.</p>
<p class="right">//</p>
<p>Lastly, for surfaces in $\R^3$, given a parametrization of $X$, the normal vector field can be computed via the cross product:</p>
<script type="math/tex; mode=display">N = \frac{X_1 \times X_2}{\norm{X_1 \times X_2}} \, ,</script>
<p>where $X_1 := \partial_1 X$ and $X_2 := \partial_2 X$, which together form a basis of the tangent space at each point on the surface.</p>
<p>Although the Gaussian curvature is defined in terms of a particular embedding of a submanifold in the Euclidean space (i.e. it is an extrinsic quantity), it is actually an intrinsic invariant of the submanifold. Gauss showed in his <strong><em>Theorema Egregium</em></strong> that in an embedded $2$-dimensional Riemannian submanifold $(\M, g)$ of $\R^3$, for every point $p \in \M$, the Gaussian curvature of $\M$ at $p$ is equal to one-half the scalar curvature of $g$ at $p$, and thus it is a local isometry invariant of $(\M, g)$.</p>
<p>Suppose $\M$ is a Riemannian $n$-manifold with $n \geq 2$, $p \in \M$, and $V \subset T_p \M$ is a <a href="https://en.wikipedia.org/wiki/Star_domain">star-shaped neighborhood</a> of zero on which $\text{exp}_p$ is a diffeomorphism onto an open set $U \subset \M$. Let $\Pi$ be any $2$-dimensional linear subspace of $T_p \M$. Since $\Pi \cap V$ is an embedded $2$-dim submanifold of $V$, it follows that $\mathcal{S}_\Pi = \text{exp}_p(\Pi \cup V)$ is an embedded $2$-dim submmanifold of $U \subset \M$ containing $p$, called the <strong><em>plane section</em></strong> determined by $\Pi$. We define the <strong><em>sectional curvature</em></strong> of $\Pi$, denoted by $\text{sec}(\Pi)$, to be the intrinsic Gaussian curvature at $p$ of the surface $\mathcal{S}_\Pi$ with the metric induced from the embedding $\mathcal{S}_\Pi \subseteq \M$. If $v, w \in T_p \M$ are linearly independent vectors, the sectional curvature’s formula is given by</p>
<script type="math/tex; mode=display">\text{sec}(v, w) := \frac{Rm_p(v, w, w, v)}{\norm{v \wedge w}^2} \, ,</script>
<p>where</p>
<script type="math/tex; mode=display">\norm{v \wedge w} := \sqrt{\norm{v}^2 \norm{w}^2 - \inner{v, w}^2} \, .</script>
<p>We can show the connection between the sectional curvature and Ricci and scalar curvatures. $Rc_p(v, v)$ is the sum of the sectional curvatures of the $2$-planes spanned by $(v, b_2), \dots, (v, b_n)$, where $(b_1, \dots, b_n)$ is any orthonormal basis for $T_p \M$ with $b_1 = v$. Furthermore, the scalar curvature at $p$ is the sum of all sectional curvatures of the $2$-planes spanned by ordered pairs of distinct basis vectors in any orthonormal basis.</p>
<h2 class="section-heading">Lie groups</h2>
<p>A <strong><em>Lie group</em></strong> is a smooth manifold $\G$ that is also a group in the algebraic sense, with the property that the multiplication map $m: \G \times \G \to \G$ and inversion map $i: \G \to \G$, given by</p>
<script type="math/tex; mode=display">m(g, h) := gh \, , \qquad i(g) := g^{-1} \, ,</script>
<p>are both smooth for arbitrary $g, h \in \G$. We denote the identity element of $G$ by $e$.</p>
<p><strong>Example 17 (Lie groups).</strong> The following manifolds are Lie groups.</p>
<ol>
<li>
<p>The <strong><em>general linear group</em></strong> $\GL(n, \R)$ is the set of invertible $n \times n$ matrices with real elements. It is a group under matrix multiplication and it is a submanifold of the vector space $\text{M}(n, \R)$, the space of $n \times n$ matrices.</p>
</li>
<li>
<p>The real number field $\R$ and the Euclidean space $\R^n$ are Lie groups under addition.</p>
</li>
</ol>
<p class="right">//</p>
<p>If $\G$ and $\mathcal{H}$ are Lie groups, a <strong><em>Lie group homomorphism</em></strong> from $\G$ to $\mathcal{H}$ is a smooth map $F: \G \to \mathcal{H}$ that is also a group homomorphism. If $F$ is also a diffeomorphism, then it is a <strong><em>Lie group isomorphism</em></strong>. We say that $\G$ and $\mathcal{H}$ are <strong><em>isomorphic Lie groups</em></strong>.</p>
<p>If $G$ is a group and $M$ is a set, a <strong><em>left action</em></strong> of $G$ on $M$ is a map $G \times M \to M$ defined by $(g, p) \mapsto g \cdot p$ that satisfies</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{alignat}{2}
g_1 \cdot (g_2 \cdot p) &= (g_1 g_2) \cdot p \qquad &&\text{for all } g_1, g_2 \in G, p \in M \, ; \\
e \cdot p &= p &&\text{for all } p \in M \, .
\end{alignat} %]]></script>
<p>Analogously, a <strong><em>right action</em></strong> is defined as a map $M \times G \to M$ satisfying</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{alignat}{2}
(p \cdot g_1) \cdot g_2 &= p \cdot (g_1 g_2) \qquad &&\text{for all } g_1, g_2 \in G, p \in M \, ; \\
p \cdot e &= p &&\text{for all } p \in M \, .
\end{alignat} %]]></script>
<p>If $M$ is a smooth manifold, $G$ is a Lie group, and the defining map is smooth, then the action is said to be <strong><em>smooth action</em></strong>.</p>
<p>We can also give a name to an action, e.g. $\theta: G \times M \to M$ with $(g, p) \mapsto \theta_g (p)$. In this notation, the above conditions for the left action read</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\theta_{g_1} \circ \theta_{g_2} &= \theta_{g_1 g_2} \, , \\
\theta_e &= \Id_M \, ,
\end{align} %]]></script>
<p>while for a right action the first equation is replaced by $\theta_{g_2} \circ \theta_{g_1} = \theta_{g_1 g_2}$. For a smooth action, each map $\theta_g : M \to M$ is a diffeomorphism.</p>
<p>For each $p \in M$, the <strong><em>orbit</em></strong> of $p$, denoted by $G \cdot p$, is the set of all images of $p$ under the action by elements of $G$:</p>
<script type="math/tex; mode=display">G \cdot p := \{ g \cdot p : g \in G \} \, .</script>
<p>The <strong><em>isotropy group</em></strong> or <strong><em>stabilizer</em></strong> of $p$, denoted by $G_p$, is the set of elements of $G$ that fix $p$ (implying $G_p$ is a subgroup of $G$):</p>
<script type="math/tex; mode=display">G_p := \{ g \in G : g \cdot p = p \} \, .</script>
<p>A group action is said to be <strong><em>transitive</em></strong> if for every pair of points $p, q \in M$, there exists $g \in G$ such that $g \cdot p = q$, i.e. if the only orbit is all of $M$. The action is said to be <strong><em>free</em></strong> if the only element of $G$ that fixes any element of $M$ is the identity: $g \cdot p$ for some $p \in M$ implies $g = e$, i.e. if every isotropy group is trivial.</p>
<p><strong>Example 18 (Lie group actions).</strong></p>
<ol>
<li>
<p>If $\G$ is a Lie group and $\M$ is a smooth manifold, the <strong><em>trivial action</em></strong> of $\G$ on $\M$ is defined by $g \cdot p = p$ for all $g \in \G$ and $p \in \M$.</p>
</li>
<li>
<p>The <strong><em>natural action</em></strong> of $\GL(n, \R)$ on $\R^n$ is the left action given by matrix multiplication $(\b{A}, \vx) \mapsto \b{A} \vx$.</p>
</li>
</ol>
<p class="right">//</p>
<p>Let $\G$ be a Lie group, $\M$ and $\N$ be smooth manifolds endowed with smooth left or right $\G$-actions. A map $F: \M \to \N$ is <strong><em>equivariant</em></strong> w.r.t. the given actions if for each $g \in G$,</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{alignat}{2}
F(g \cdot p) &= g \cdot F(p) \qquad &&\text{for left actions} \, , \\
F(p \cdot g) &= F(p) \cdot g &&\text{for right actions} \, .
\end{alignat} %]]></script>
<p>If $F: \M \to \N$ is a smooth map that is equivariant w.r.t. a transitive smooth $\G$-action on $\M$ and any smooth $\G$-action on $\N$, then $F$ has <strong><em>constant rank</em></strong>, meaning that its rank is the same for all $p \in \M$. Thus, if $F$ is surjective, it is a smooth submersion; if it is injective, it is a smooth immersion; and if it is bijective, it is a diffeomorphism.</p>
<p><strong>Example 19 (The orthogonal group).</strong> A real $n \times n$ matrix $\b{A}$ is said to be <strong><em>orthogonal</em></strong> if it preserves the Euclidean dot product as a linear map:</p>
<script type="math/tex; mode=display">(\b{A} \vx) \cdot (\b{A} \vx) = \vx \cdot \vy \qquad \text{for all} \, \vx, \vy \in \R^n \, .</script>
<p>The set of all orthogonal $n \times n$ matrices $\text{O}(n)$ is a subgroup of $\GL(n, \R)$, called the <strong><em>orthogonal group</em></strong> of degree $n$.</p>
<p class="right">//</p>
<p>We would like to also study the theory of <strong><em>group representations</em></strong>, i.e. asking the question whether all Lie groups can be realized as Lie subgroups of $\GL(n, \R)$ or $\GL(n, \C)$. If $\G$ is a Lie group, a <strong><em>representation</em></strong> of $\G$ is a Lie group homomorphism from $\G$ to $\GL(V)$ for some finite-dimensional vector space $V$. Note that, $\GL(V)$ denotes the group of invertible linear transformations of $V$ which is a Lie group isomorphic to $\GL(n, \R)$. If a representation is injective, it is said to be <strong><em>faithful</em></strong>.</p>
<p>There is a close connection between representations and group actions. An action of $\G$ on $V$ is said to be a <strong><em>linear action</em></strong> if for each $g \in \G$, the map $V \to V$ defined by $x \mapsto g \cdot x$ is linear.</p>
<p><strong>Example 20 (Linear action).</strong> If $\rho: \G \to \GL(V)$ is a representation of $\G$, there is an associated smooth linear action of $\G$ on $V$ given by $g \cdot x = \rho(g) x$. In fact, this holds for every linear action.</p>
<p class="right">//</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Lee, John M. “Smooth manifolds.” Introduction to Smooth Manifolds. Springer, New York, NY, 2013. 1-31.</li>
<li>Lee, John M. Riemannian manifolds: an introduction to curvature. Vol. 176. Springer Science & Business Media, 2006.</li>
<li>Fels, Mark Eric. “An Introduction to Differential Geometry through Computation.” (2016).</li>
<li>Absil, P-A., Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, 2009.</li>
<li>Boumal, Nicolas. Optimization and estimation on manifolds. Diss. Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2014.</li>
<li>Graphics: <a href="https://tex.stackexchange.com/questions/261408/sphere-tangent-to-plane">https://tex.stackexchange.com/questions/261408/sphere-tangent-to-plane</a>.</li>
</ol>
Fri, 22 Feb 2019 12:00:00 +0100
http://wiseodd.github.io/techblog/2019/02/22/riemannian-geometry/
http://wiseodd.github.io/techblog/2019/02/22/riemannian-geometry/mathtechblogMinkowski's, Dirichlet's, and Two Squares Theorem<p><img src="/img/2018-07-24-minkowski-dirichlet/forest.svg" alt="Forest" height="250px" width="250px" /></p>
<p>Suppose we are standing at the origin of bounded regular forest in \( \mathbb{R}^2 \), with diameter of \(26\)m, and all the trees inside have diameter of \(0.16\)m. Can we see outside this forest? This problem can be solved using Minkowski’s Theorem. We will see the theorem itself first, and we shall see how can we answer that question. Furthermore, Minkowski’s Theorem can also be applied to answer two other famous theorems, Dirichlet’s Approximation Theorem, and Two Squares Theorem.</p>
<p><strong>Theorem 1 (Minkowski’s Theorem)</strong><br />
Let \( C \subseteq \mathbb{R}^d \) be symmetric around the origin, convex, and bounded set. If \( \text{vol}(C) > 2^d \) then \( C \) contains at least one lattice point different from the origin.</p>
<p><em>Proof.</em> Let \( C’ := \frac{1}{2} C = \{ \frac{1}{2} c \, \vert \, c \in C \} \). Assume that there exists non-zero integer \( v \in \mathbb{Z}^d \setminus \{ 0 \} \), such that the intersection between \( C’ \) and its translation wrt. \( v \) is non-empty.</p>
<p>Pick arbitrary \( x \in C’ \cap (C’ + v) \). Then \( x - v \in C’ \) by construction. By symmetry, \( v - x \in C’ \). As \( C’ \) is convex, then line segment between \( x \) and \( v - x \) is in \( C’ \). We particularly consider the midpoint of the line segment: \( \frac{1}{2}x + \frac{1}{2} (v - x) = \frac{1}{2} v \in C’ \). This immediately implies that \( v \in C \) by the definition of \( C’ \), which proves the theorem.</p>
<p class="right">\( \square \)</p>
<p>The claim that there exists non-zero integer \( v \in \mathbb{Z}^d \setminus \{ 0 \} \), such that \( C’ \cap (C’ + v) \neq \emptyset \) is not proven in this post. One can refer to Matoušek’s book for the proof.</p>
<p><img src="/img/2018-07-24-minkowski-dirichlet/forest_minkowski.svg" alt="Minkowsi_forest" height="250px" width="250px" /></p>
<p>Given Minkowski’s Theorem, now we can answer our original question. We assume the trees are just lattice points, and our visibility line is now a visibility strip, which has wide of \( 0.16 \)m and length of \( 26 \)m. We note that the preconditions of Minkowski’s Theorem are satisfied by this visibility strip, which has the volume of \( \approx 4.16 > 4 = 2^d \). Therefore, there exists a lattice point other than the origin inside our visibility strip. Thus our vision outside is blocked by the tree.</p>
<p>Now we look at two theorems that can be proven using Minkowski’s Theorem. The first one is about approximation of real number with a rational.</p>
<p><strong>Theorem 2 (Dirichlet’s Approximation Theorem)</strong><br />
Let \( \alpha \in \mathbb{R} \). Then for all \( N \in \mathbb{N} \), there exists \( m \in \mathbb{Z}, n \in \mathbb{N} \) with \( n \leq N \) such that:</p>
<script type="math/tex; mode=display">\left \vert \, \alpha - \frac{m}{n} \right \vert \lt \frac{1}{nN} \enspace .</script>
<p><em>Proof.</em> Consider \( C := \{ (x, y) \in \mathbb{R}^2 \, \vert \, -N-\frac{1}{2} \leq x \leq N+\frac{1}{2}, \vert \alpha x - y \vert \lt \frac{1}{N} \} \). By inspection on the figure below, we can observe that \( C \) is convex, bounded, and symmetric around the origin.</p>
<p><img src="/img/2018-07-24-minkowski-dirichlet/dirichlet.svg" alt="Dirichlet" height="400px" width="400px" /></p>
<p>Observe also that the area of \( C \) is \( \text{vol}(C) = \frac{2}{N} (2N + 1) = 4 + \frac{2}{N} \gt 4 = 2^d \). Thus this construction satisfied the Minkowski’s Theorem’s preconditions. Therefore there exists lattice point \( (n, m) \neq (0, 0) \). As \( C \) is symmetric, we can always assume \( n \gt 0 \) thus \( n \in \mathbb{N} \). By definition of \( C \), \( n \leq N+\frac{1}{2} \implies n \leq N \) as \( N \in \mathbb{N} \). Futhermore, we have \( \vert \alpha n - m \vert \lt \frac{1}{N} \). This implies \( \left\vert \alpha - \frac{m}{n} \right\vert \lt \frac{1}{nN} \) which conclude the proof.</p>
<p class="right">\( \square \)</p>
<p>Our second application is the theorem saying that prime number \( p \equiv 1 \, (\text{mod } 4) \) can be written as a sum of two squares. For this we need the General Minkowski’s Theorem, which allows us to use arbitrary basis for our lattice.</p>
<p><strong>Theorem 3 (General Minkowski’s Theorem)</strong>
Let \( C \subseteq \mathbb{R}^d \) be symmetric around the origin, convex, and bounded set. Let \( \Gamma \) be the lattice in \( \mathbb{R}^d \). If \( \text{vol}(C) > 2^d \,\text{vol}(\Gamma) = 2^d \det \Gamma \), then \( C \) contains at least one lattice point in \( \Gamma \) different from the origin.</p>
<p class="right">\( \square \)</p>
<p><strong>Theorem 4 (Two Squares Theorem)</strong><br />
Every prime number \( p \equiv 1 \, (\text{mod } 4) \) can be written by the sum of two squares \( p = a^2 + b^2 \) where \( a, b \in \mathbb{Z} \).</p>
<p><em>Proof.</em> We need intermediate result which will not be proven here (refer to [1] for the proof): \( -1 \) is a quadratic residue modulo \( p \), that is, there exists \( q \lt p \) such that \( q^2 \equiv -1 \, (\text{mod } p) \).</p>
<p>Fix \( q \) and take the following basis for our lattice: \( z_1 := (1, q), \, z_2 := (0, p) \). The volume of this lattice is: \( \det \Gamma = \det \begin{bmatrix} 1 & 0 \\ q & p \end{bmatrix} = p \).</p>
<p>Define a convex, symmetric, and bounded body \( C := \{ (x, y) \in \mathbb{R}^2 \, \vert \, x^2 + y^2 \lt 2p \} \), i.e. \( C \) is an open ball around the origin with radius \( \sqrt{2p} \). Note:</p>
<script type="math/tex; mode=display">\text{vol}(C) = \pi r^2 \approx 6.28p \gt 4p = 2^2 p = 2^d \det \Gamma \enspace ,</script>
<p>thus General Minkowski’s Theorem applies and there exists a lattice point \( (a, b) = i z_1 + j z_2 = (i, iq + jp) \neq (0, 0) \). Notice:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
a^2 + b^2 &= i^2 + i^2 q^2 + 2ijpq + j^2 p^2 \\
&\equiv i^2 + i^2q^2 \, (\text{mod } p) \\
&\equiv i^2(1+q^2) \, (\text{mod } p) \\
&\equiv i^2(1-1) \, (\text{mod } p) \\
&\equiv 0 \, (\text{mod } p) \enspace .
\end{align} %]]></script>
<p>To go from 3rd to 4th line, we use our very first assumption, i.e. \( q^2 \equiv -1 \, (\text{mod } p) \). Therefore \( a^2 + b^2 \) has to be divisible by \( p \). Also, as \( (a, b) \) is in \( C \) this implies \( a^2 + b^2 \lt 2p \) by definition. Thus the only choice is \( a^2 + b^2 = p \). This proves the theorem.</p>
<p class="right">\( \square \)</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Matoušek, Jiří. Lectures on discrete geometry. Vol. 212. New York: Springer, 2002.</li>
</ol>
Tue, 24 Jul 2018 20:30:00 +0200
http://wiseodd.github.io/techblog/2018/07/24/minkowski-dirichlet/
http://wiseodd.github.io/techblog/2018/07/24/minkowski-dirichlet/mathtechblogReduced Betti number of sphere: Mayer-Vietoris Theorem<p>In the <a href="/techblog/2018/07/18/brouwers-fixed-point/">previous post</a> about Brouwer’s Fixed Point Theorem, we used two black boxes. In this post we will prove the slight variation of those black boxes. We will start with the simplest lemma first: the reduced homology of balls.</p>
<p><strong>Lemma 2 (Reduced homology of balls)</strong><br />
Given a \( d \)-ball \( \mathbb{B}^d \), then its reduced \( p \)-th homology space is trivial, i.e. \(\tilde{H}_p(\mathbb{B}^d) = 0 \), for any \( d \) and \( p \).</p>
<p><em>Proof.</em> Observe that \( \mathbb{B}^d \) is contractible, i.e. homotopy equivalent to a point. Assuming we use coefficient \( \mathbb{Q} \), we know the zero-th homology space of point is \( H_0(\, \cdot \,, \mathbb{Q}) = \mathbb{Q} \), and trivial otherwise, i.e. \( H_p (\, \cdot \,, \mathbb{Q}) = 0 \enspace \forall p \geq 1 \).</p>
<p>In the reduced homology, therefore \( \tilde{H}_0(\, \cdot \,, \mathbb{Q}) = 0 \). Thus the reduced homology of balls is trivial for all \( d, p \).</p>
<p class="right">\( \square \)</p>
<p><strong>Corollary 1 (Reduced Betti numbers of balls)</strong><br />
The \( p \)-th reduced Betti numbers of \( \mathbb{B}^d \) is zero for all \(d, p\).</p>
<p class="right">\( \square \)</p>
<p>Now, we are ready to prove the main theme of this post.</p>
<p><strong>Lemma 1 (Reduced Betti numbers of spheres)</strong> <br />
Given a \( d \)-sphere \( \mathbb{S}^d \), then its \( p \)-th reduced Betti number is:</p>
<script type="math/tex; mode=display">% <![CDATA[
\tilde{\beta}_p(\mathbb{S}^d) = \begin{cases} 1, & \text{if } p = d \\ 0, & \text{otherwise} \enspace . \end{cases} %]]></script>
<p><em>Proof.</em> We use “divide-and-conquer” approach to apply Mayer-Vietoris Theorem. We cut the sphere along the equator and note that the upper and lower portion of the sphere is just a disk, and the intersection between those two parts is a circle (sphere one dimension down), as shown in the figure below.</p>
<p><img src="/img/2018-07-23-mayer-vietoris-sphere/sphere.svg" alt="Sphere" height="350px" width="350px" /></p>
<p>By Mayer-Vietoris Theorem, we have a long exact sequence in the form of:</p>
<script type="math/tex; mode=display">\dots \longrightarrow \tilde{H}_p(\mathbb{S}^{d-1}) \longrightarrow \tilde{H}_p(\mathbb{B}^d) \oplus \tilde{H}_p(\mathbb{B}^d) \longrightarrow \tilde{H}_p(\mathbb{S}^d) \longrightarrow \tilde{H}_{p-1}(\mathbb{S}^{d-1}) \longrightarrow \dots \enspace .</script>
<p>By Corollary 1, \( \tilde{H}_p(\mathbb{B}^d) \oplus \tilde{H}_p(\mathbb{B}^d) = \tilde{H}_{p-1}(\mathbb{B}^d) \oplus \tilde{H}_{p-1}(\mathbb{B}^d) = 0 \). As the sequence is exact, therefore \( \tilde{H}_p(\mathbb{S}^d) \longrightarrow \tilde{H}_{p-1}(\mathbb{S}^{d-1}) \) is a bijection, and thus an isomorphism. Then by induction with base case of \( \mathbb{S}^0 \), we conclude that the claim holds.</p>
<p class="right">\( \square \)</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Hatcher, Allen. “Algebraic topology.” (2001).</li>
</ol>
Mon, 23 Jul 2018 10:00:00 +0200
http://wiseodd.github.io/techblog/2018/07/23/mayer-vietoris-sphere/
http://wiseodd.github.io/techblog/2018/07/23/mayer-vietoris-sphere/mathtechblogBrouwer's Fixed Point Theorem: A Proof with Reduced Homology<p>This post is about the proof I found very interesting during the Topology course I took this semester. It highlights the application of Reduced Homology, which is a modification of Homology theory in Algebraic Topology. We will use two results from Reduced Homology as black-boxes for the proof. Everywhere, we will assume \( \mathbb{Q} \) is used as the coefficient of the Homology space.</p>
<p><strong>Lemma 1 (Reduced Homology of spheres)</strong>
Given a \( d \)-sphere \( \mathbb{S}^d \), then its reduced \( p \)-th Homology space is:</p>
<script type="math/tex; mode=display">% <![CDATA[
\tilde{H}_p(\mathbb{S}^d) = \begin{cases} \mathbb{Q}, & \text{if } p = d \\ 0, & \text{otherwise} \enspace . \end{cases} %]]></script>
<p class="right">\( \square \)</p>
<p><strong>Lemma 2 (Reduced Homology of balls)</strong>
Given a \( d \)-ball \( \mathbb{B}^d \), then its reduced \( p \)-th Homology space is trivial, i.e. \(\tilde{H}_p(\mathbb{B}^d) = 0 \), for any \( d \) and \( p \).</p>
<p class="right">\( \square \)</p>
<p>Equipped with these lemmas, we are ready to prove the special case of Brouwer’s Fixed Point Theorem, where we consider map from a ball to itself.</p>
<p><strong>Brouwer’s Fixed Point Theorem</strong>
Given \( f: \mathbb{B}^{d+1} \to \mathbb{B}^{d+1} \) continuous, then there exists \( x
\in \mathbb{B}^{d+1} \) such that \( f(x) = x \).</p>
<p><em>Proof.</em> For contradiction, assume \( \forall x \in \mathbb{B}^{d+1}: f(x) \neq x \). We construct a map \( r: \mathbb{B}^{d+1} \to \mathbb{S}^d \), casting ray from the ball to its shell by extending the line segment between \( x \) and \( f(x) \).</p>
<p><img src="/img/2018-07-18-brouwers-fixed-point/map_r.svg" alt="Map r" height="200px" width="200px" /></p>
<p>Observe that \( r(x) \) is continuous because \( f(x) \) is. Also, \( x \in \mathbb{S}^d \implies r(x) = x \). Therefore we have the following commutative diagram.</p>
<p><img src="/img/2018-07-18-brouwers-fixed-point/comm_diag.svg" alt="Commutative Diagram" height="200px" width="200px" /></p>
<p>Above, \( i \) is inclusion map, and \( id \) is identity map. We then look of the Reduced Homology of the above, and this gives us the following commutative diagram.</p>
<p><img src="/img/2018-07-18-brouwers-fixed-point/comm_diag_hom.svg" alt="Commutative Diagram Homology" height="275px" width="275px" /></p>
<p>As the diagram commute, then \( \tilde{H}_d(\mathbb{S}^d) \xrightarrow{i^*} \tilde{H}_d(\mathbb{B}^{d+1}) \xrightarrow{r^*} \tilde{H}_d(\mathbb{S}^d) \) should be identity map on \( \tilde{H}_d(\mathbb{S}^d) \). By Lemma 2, \( \tilde{H}_d(\mathbb{B}^{d+1}) = 0 \). This implies \( \tilde{H}_d(\mathbb{S}^d) = 0 \). But this is a contradiction, as By Lemma 1, \( \tilde{H}_d(\mathbb{S}^d) = \mathbb{Q} \). Therefore there must be a fixed point.</p>
<p class="right">\( \square \)</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Hatcher, Allen. “Algebraic topology.” (2001).</li>
</ol>
Wed, 18 Jul 2018 10:00:00 +0200
http://wiseodd.github.io/techblog/2018/07/18/brouwers-fixed-point/
http://wiseodd.github.io/techblog/2018/07/18/brouwers-fixed-point/mathtechblogNatural Gradient Descent<p><a href="/techblog/2018/03/11/fisher-information/">Previously</a>, we looked at the Fisher Information Matrix. We saw that it is equal to the negative expected Hessian of log likelihood. Thus, the immediate application of Fisher Information Matrix is as drop-in replacement of Hessian in second order optimization algorithm. In this article, we will look deeper at the intuition on what excatly is the Fisher Information Matrix represents and what is the interpretation of it.</p>
<h2 class="section-heading">Distribution Space</h2>
<p>As per previous article, we have a probabilistic model represented by its likelihood \( p(x \vert \theta) \). We want to maximize this likelihood function to find the most likely parameter \( \theta \). Equivalent formulation would be to minimize the loss function \( \mathcal{L}(\theta) \), which is the negative log likelihood.</p>
<p>Usual way to solve this optimization is to use gradient descent. In this case, we are taking step which direction is given by \( -\nabla_\theta \mathcal{L}(\theta) \). This is the steepest descent direction around the local neighbourhood of the current value of \( \theta \) in the parameter space. Formally, we have</p>
<script type="math/tex; mode=display">\frac{-\nabla_\theta \mathcal{L}(\theta)}{\lVert \nabla_\theta \mathcal{L}(\theta) \rVert} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \mathop{\text{arg min}}_{d \text{ s.t. } \lVert d \rVert \leq \epsilon} \mathcal{L}(\theta + d) \, .</script>
<p>The above expression is saying that the steepest descent direction in parameter space is to pick a vector \( d \), such that the new parameter \( \theta + d \) is within the \( \epsilon \)-neighbourhood of the current parameter \( \theta \), and we pick \( d \) that minimize the loss. Notice the way we express this neighbourhood is by the means of Euclidean norm. Thus, the optimization in gradient descent is dependent to the Euclidean geometry of the parameter space.</p>
<p>Meanwhile, if our objective is to minimize the loss function (maximizing the likelihood), then it is natural that we taking step in the space of all possible likelihood, realizable by parameter \( \theta \). As the likelihood function itself is a probability distribution, we call this space distribution space. Thus it makes sense to take the steepest descent direction in this distribution space instead of parameter space.</p>
<p>Which metric/distance then do we need to use in this space? A popular choice would be KL-divergence. KL-divergence measure the “closeness” of two distributions. Although as KL-divergence is non-symmetric and thus not a true metric, we can use it anyway. This is because as \( d \) goes to zero, KL-divergence is asymptotically symmetric. So, within a local neighbourhood, KL-divergence is approximately symmetric [1].</p>
<p>We can see the problem when using only Euclidean metric in parameter space from the illustrations below. Consider a Gaussian parameterized by only its mean and keep the variance fixed to 2 and 0.5 for the first and second image respectively:</p>
<p><img src="/img/2018-03-14-natural-gradient/param_space_dist.png" alt="Param1" /></p>
<p><img src="/img/2018-03-14-natural-gradient/param_space_dist2.png" alt="Param2" /></p>
<p>In both images, the distance of those Gaussians are the same, i.e. 4, according to Euclidean metric (red line). However, clearly in distribution space, i.e. when we are taking into account the shape of the Gaussians, the distance is different in the first and second image. In the first image, the KL-divergence should be lower as there is more overlap between those Gaussians. Therefore, if we only work in parameter space, we cannot take into account this information about the distribution realized by the parameter.</p>
<p>The other nice property of working in distribution space instead of parameter space is that in distribution space, it is invariant to parameterization of the distribution. As an illustration, consider a Gaussian. We can parametrize it with its covariance matrix or precision matrix. Covariance and precision matrix are different to each other (up to special condition, e.g. identity matrix), even though it induces the same Gaussian. Thus, a single point in distribution space are possibly mapped into two different points in the parameter space. If we work in distribution space, then we only care about the resulting Gaussian.</p>
<h2 class="section-heading">Fisher and KL-divergence</h2>
<p>One question still needs to be answered is what exactly is the connection between Fisher Information Matrix and KL-divergence? It turns out, Fisher Information Matrix defines the local curvature in distribution space for which KL-divergence is the metric.</p>
<p><strong>Claim:</strong>
Fisher Information Matrix \( \text{F} \) is the Hessian of KL-divergence between two distributions \( p(x \vert \theta) \) and \( p(x \vert \theta’) \), with respect to \( \theta’ \), evaluated at \( \theta’ = \theta \).</p>
<p><em>Proof.</em> KL-divergence can be decomposed into entropy and cross-entropy term, i.e.:</p>
<script type="math/tex; mode=display">\text{KL} [p(x \vert \theta) \, \Vert \, p(x \vert \theta')] = \mathop{\mathbb{E}}_{p(x \vert \theta)} [ \log p(x \vert \theta) ] - \mathop{\mathbb{E}}_{p(x \vert \theta)} [ \log p(x \vert \theta') ] \, .</script>
<p>The first derivative wrt. \( \theta’ \) is:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\nabla_{\theta'} \text{KL}[p(x \vert \theta) \, \Vert \, p(x \vert \theta')] &= \nabla_{\theta'} \mathop{\mathbb{E}}_{p(x \vert \theta)} [ \log p(x \vert \theta) ] - \nabla_{\theta'} \mathop{\mathbb{E}}_{p(x \vert \theta)} [ \log p(x \vert \theta') ] \\[5pt]
&= - \mathop{\mathbb{E}}_{p(x \vert \theta)} [ \nabla_{\theta'} \log p(x \vert \theta') ] \\[5pt]
&= - \int p(x \vert \theta) \nabla_{\theta'} \log p(x \vert \theta') \, \text{d}x \, .
\end{align} %]]></script>
<p>The second derivative is:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\nabla_{\theta'}^2 \, \text{KL}[p(x \vert \theta) \, \Vert \, p(x \vert \theta')] &= - \int p(x \vert \theta) \, \nabla_{\theta'}^2 \log p(x \vert \theta') \, \text{d}x \\[5pt]
\end{align} %]]></script>
<p>Thus, the Hessian wrt. \( \theta’ \) evaluated at \( \theta’ = \theta \) is:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\text{H}_{\text{KL}[p(x \vert \theta) \, \Vert \, p(x \vert \theta')]} &= - \int p(x \vert \theta) \, \left. \nabla_{\theta'}^2 \log p(x \vert \theta') \right\vert_{\theta' = \theta} \, \text{d}x \\[5pt]
&= - \int p(x \vert \theta) \, \text{H}_{\log p(x \vert \theta)} \, \text{d}x \\[5pt]
&= - \mathop{\mathbb{E}}_{p(x \vert \theta)} [\text{H}_{\log p(x \vert \theta)}] \\[5pt]
&= \text{F} \, .
\end{align} %]]></script>
<p>The last line follows from <a href="/techblog/2018/03/11/fisher-information/">the previous article about Fisher Information Matrix</a>, in which we showed that the negative expected Hessian of log likelihood is the Fisher Information Matrix.</p>
<p class="right">\( \square \)</p>
<h2 class="section-heading">Steepest Descent in Distribution Space</h2>
<p>Now we are ready to use the Fisher Information Matrix to enhance the gradient descent. But first, we need to derive the Taylor series expansion for KL-divergence around \( \theta \).</p>
<p><strong>Claim:</strong>
Let \( d \to 0 \). The second order Taylor series expansion of KL-divergence is \( \text{KL}[p(x \vert \theta) \, \Vert \, p(x \vert \theta + d)] \approx \frac{1}{2} d^\text{T} \text{F} d \).</p>
<p><em>Proof.</em> We will use \( p_{\theta} \) as a notational shortcut for \( p(x \vert \theta) \). By definition, the second order Taylor series expansion of KL-divergence is:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\text{KL}[p_{\theta} \, \Vert \, p_{\theta + d}] &\approx \text{KL}[p_{\theta} \, \Vert \, p_{\theta}] + (\left. \nabla_{\theta'} \text{KL}[p_{\theta} \, \Vert \, p_{\theta'}] \right\vert_{\theta' = \theta})^\text{T} d + \frac{1}{2} d^\text{T} \text{F} d \\[5pt]
&= \text{KL}[p_{\theta} \, \Vert \, p_{\theta}] - \mathop{\mathbb{E}}_{p(x \vert \theta)} [ \nabla_\theta \log p(x \vert \theta) ]^\text{T} d + \frac{1}{2} d^\text{T} \text{F} d \\[5pt]
\end{align} %]]></script>
<p>Notice that the first term is zero as it is the same distribution. Furthermore, from the <a href="/techblog/2018/03/11/fisher-information/">previous article</a>, we saw that the expected value of the gradient of log likelihood, which is exactly the gradient of KL-divergence as shown in the previous proof, is also zero. Thus the only thing left is:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\text{KL}[p(x \vert \theta) \, \Vert \, p(x \vert \theta + d)] &\approx \frac{1}{2} d^\text{T} \text{F} d \, .
\end{align} %]]></script>
<p class="right">\( \square \)</p>
<p>Now, we would like to know what is update vector \( d \) that minimizes the loss function \( \mathcal{L} (\theta) \) in distribution space, so that we know in which direction decreases the KL-divergence the most. This is analogous to the method of steepest descent, but in distribution space with KL-divergence as metric, instead of the usual parameter space with Euclidean metric. For that, we do this minimization:</p>
<script type="math/tex; mode=display">d^* = \mathop{\text{arg min}}_{d \text{ s.t. } \text{KL}[p_\theta \Vert p_{\theta + d}] = c} \mathcal{L} (\theta + d) \, ,</script>
<p>where \( c \) is some constant. The purpose of fixing the KL-divergence to some constant is to make sure that we move along the space with constant speed, regardless the curvature. Further benefit is that this makes the algorithm more robust to the reparametrization of the model, i.e. the algorithm does not care how the model is parametrized, it only cares about the distribution induced by the parameter [3].</p>
<p>If we write the above minimization in Lagrangian form, with constraint KL-divergence approximated by its second order Taylor series expansion and approximate \( \mathcal{L}(\theta + d) \) with its first order Taylor series expansion, we get:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
d^* &= \mathop{\text{arg min}}_d \, \mathcal{L} (\theta + d) + \lambda \, (\text{KL}[p_\theta \Vert p_{\theta + d}] - c) \\
&\approx \mathop{\text{arg min}}_d \, \mathcal{L}(\theta) + \nabla_\theta \mathcal{L}(\theta)^\text{T} d + \frac{1}{2} \lambda \, d^\text{T} \text{F} d - \lambda c \, .
\end{align} %]]></script>
<p>To solve this minimization, we set its derivative wrt. \( d \) to zero:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
0 &= \frac{\partial}{\partial d} \mathcal{L}(\theta) + \nabla_\theta \mathcal{L}(\theta)^\text{T} d + \frac{1}{2} \lambda \, d^\text{T} \text{F} d - \lambda c \\[5pt]
&= \nabla_\theta \mathcal{L}(\theta) + \lambda \, \text{F} d \\[5pt]
\lambda \, \text{F} d &= -\nabla_\theta \mathcal{L}(\theta) \\[5pt]
d &= -\frac{1}{\lambda} \text{F}^{-1} \nabla_\theta \mathcal{L}(\theta) \\[5pt]
\end{align} %]]></script>
<p>Up to constant factor of \( \frac{1}{\lambda} \), we get the optimal descent direction, i.e. the opposite direction of gradient while taking into account the local curvature in distribution space defined by \( \text{F}^{-1} \). We can absorb this constant factor into the learning rate.</p>
<p><strong>Definition:</strong>
Natural gradient is defined as</p>
<script type="math/tex; mode=display">\tilde{\nabla}_\theta \mathcal{L}(\theta) = \text{F}^{-1} \nabla_\theta \mathcal{L}(\theta) \, .</script>
<p class="right">\( \square \)</p>
<p>As corollary, we have the following algorithm:</p>
<p><strong>Algorithm: Natural Gradient Descent</strong></p>
<ol>
<li>Repeat:
<ol>
<li>Do forward pass on our model and compute loss \( \mathcal{L}(\theta) \).</li>
<li>Compute the gradient \( \nabla_\theta \mathcal{L}(\theta) \).</li>
<li><a href="/techblog/2018/03/11/fisher-information/">Compute the Fisher Information Matrix</a> \( \text{F} \), or its empirical version (wrt. our training data).</li>
<li>Compute the natural gradient \( \tilde{\nabla}_\theta \mathcal{L}(\theta) = \text{F}^{-1} \nabla_\theta \mathcal{L}(\theta) \).</li>
<li>Update the parameter: \( \theta = \theta - \alpha \, \tilde{\nabla}_\theta \mathcal{L}(\theta) \), where \( \alpha \) is the learning rate.</li>
</ol>
</li>
<li>Until convergence.</li>
</ol>
<h2 class="section-heading">Simple Implementation Example</h2>
<p><strong>Remark.</strong> <em>The implementation below is based on the empirical FIM, thus does not reflect the true natural gradient. (See <a href="https://arxiv.org/abs/1905.12558">https://arxiv.org/abs/1905.12558</a>.) To use the true FIM, one need to take the expectation of the outer product of the gradient w.r.t. the predictive distribution. For example, one can do Monte Carlo approximation by drawing random labels to compute the loss and subsequently compute the FIM. Note that the calculation of the vanilla gradient remains unchanged.</em></p>
<p>Let’s consider logistic regression problem. The training data is drawn from a mixture of Gaussians centered at \( (-1, -1) \) and \( (1, 1) \). We assign different labels for each mode. The code is as follows:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="n">np</span>
<span class="kn">from</span> <span class="nn">sklearn.utils</span> <span class="kn">import</span> <span class="n">shuffle</span>
<span class="n">X0</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">100</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">X1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">100</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">([</span><span class="n">X0</span><span class="p">,</span> <span class="n">X1</span><span class="p">])</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">([</span><span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="mi">100</span><span class="p">,</span> <span class="mi">1</span><span class="p">]),</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">([</span><span class="mi">100</span><span class="p">,</span> <span class="mi">1</span><span class="p">])])</span>
<span class="n">X</span><span class="p">,</span> <span class="n">t</span> <span class="o">=</span> <span class="n">shuffle</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">t</span><span class="p">)</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span> <span class="o">=</span> <span class="n">X</span><span class="p">[:</span><span class="mi">150</span><span class="p">],</span> <span class="n">X</span><span class="p">[:</span><span class="mi">50</span><span class="p">]</span>
<span class="n">t_train</span><span class="p">,</span> <span class="n">t_test</span> <span class="o">=</span> <span class="n">t</span><span class="p">[:</span><span class="mi">150</span><span class="p">],</span> <span class="n">t</span><span class="p">[:</span><span class="mi">50</span><span class="p">]</span>
</code></pre></div></div>
<p>Next, we consider our model. It is a simple linear model (without bias) with sigmoid output. Thus naturally, we use binary cross entropy loss:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="c"># Initialize weight</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.01</span>
<span class="k">def</span> <span class="nf">sigm</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="mi">1</span><span class="o">/</span><span class="p">(</span><span class="mi">1</span><span class="o">+</span><span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">x</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">NLL</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">t</span><span class="p">):</span>
<span class="k">return</span> <span class="o">-</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">t</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">y</span><span class="p">)</span> <span class="o">+</span> <span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">t</span><span class="p">)</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">y</span><span class="p">))</span>
</code></pre></div></div>
<p>Inside the training loop, the forward pass looks like:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="c"># Forward</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">X_train</span> <span class="err">@</span> <span class="n">W</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">sigm</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">NLL</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">t_train</span><span class="p">)</span>
<span class="c"># Loss</span>
<span class="k">print</span><span class="p">(</span><span class="n">f</span><span class="s">'Loss: {loss:.3f}'</span><span class="p">)</span>
</code></pre></div></div>
<p>The gradient of the loss function wrt. parameter \( w \) is then as follows:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="n">dy</span> <span class="o">=</span> <span class="p">(</span><span class="n">y</span><span class="o">-</span><span class="n">t_train</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="n">m</span> <span class="o">*</span> <span class="p">(</span><span class="n">y</span> <span class="o">-</span> <span class="n">y</span><span class="o">*</span><span class="n">y</span><span class="p">))</span>
<span class="n">dz</span> <span class="o">=</span> <span class="n">sigm</span><span class="p">(</span><span class="n">z</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">sigm</span><span class="p">(</span><span class="n">z</span><span class="p">))</span>
<span class="n">dW</span> <span class="o">=</span> <span class="n">X_train</span><span class="o">.</span><span class="n">T</span> <span class="err">@</span> <span class="p">(</span><span class="n">dz</span> <span class="o">*</span> <span class="n">dy</span><span class="p">)</span>
</code></pre></div></div>
<p>At this point we are ready to do update step for vanilla gradient descent:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="n">W</span> <span class="o">=</span> <span class="n">W</span> <span class="o">-</span> <span class="n">alpha</span> <span class="o">*</span> <span class="n">dW</span>
</code></pre></div></div>
<p>For natural gradient descent, we need some extra works. Firstly we need to compute the gradient of log likelihood wrt. \( w \), without summing, as we will do this when we compute the covariance.</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="n">grad_loglik_z</span> <span class="o">=</span> <span class="p">(</span><span class="n">t_train</span><span class="o">-</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="n">y</span> <span class="o">-</span> <span class="n">y</span><span class="o">*</span><span class="n">y</span><span class="p">)</span> <span class="o">*</span> <span class="n">dz</span>
<span class="n">grad_loglik_W</span> <span class="o">=</span> <span class="n">grad_loglik_z</span> <span class="o">*</span> <span class="n">X_train</span>
</code></pre></div></div>
<p>The Empirical Fisher is given by the empirical covariance matrix of the gradient of log likelihood wrt. our training data:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="n">F</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">cov</span><span class="p">(</span><span class="n">grad_loglik_W</span><span class="o">.</span><span class="n">T</span><span class="p">)</span>
</code></pre></div></div>
<p>To do the update step, we need to take the product of \( \text{F}^{-1} \) with the gradient of loss:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="n">W</span> <span class="o">=</span> <span class="n">W</span> <span class="o">-</span> <span class="n">alpha</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">F</span><span class="p">)</span> <span class="err">@</span> <span class="n">dW</span>
</code></pre></div></div>
<p>The complete script to reproduce this can be found at:
<a href="https://gist.github.com/wiseodd/1c9f5006310f5ee03bd4682b4c03020a">https://gist.github.com/wiseodd/1c9f5006310f5ee03bd4682b4c03020a</a>.</p>
<p>How good is natural gradient descent compared to the vanilla gradient descent? Below are the comparison of loss value after five iterations, averaged over 100 repetitions.</p>
<table class="table-bordered">
<thead>
<tr>
<th style="text-align: left">Method</th>
<th style="text-align: center">Mean loss</th>
<th style="text-align: center">Std. loss</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">Natural Gradient Descent</td>
<td style="text-align: center"><strong>0.1823</strong></td>
<td style="text-align: center"><strong>0.0814</strong></td>
</tr>
<tr>
<td style="text-align: left">Vanilla Gradient Descent</td>
<td style="text-align: center">0.4058</td>
<td style="text-align: center">0.106</td>
</tr>
</tbody>
</table>
<p>At least in this very simple setting, natural gradient descent converges twice as fast as the vanilla counterpart. Furthermore, it converges faster consistently, as shown by the standard deviation.</p>
<h2 class="section-heading">Discussion</h2>
<p>In the above very simple model with low amount of data, we saw that we can implement natural gradient descent easily. But how easy is it to do this in the real world? As we know, the number of parameters in deep learning models is very large, within millions of parameters. The Fisher Information Matrix for these kind of models is then infeasible to compute, store, or invert. This is the same problem as why second order optimization methods are not popular in deep learning.</p>
<p>One way to get around this problem is to approximate the Fisher/Hessian instead. Method like ADAM [4] computes the running average of first and second moment of the gradient. First moment can be seen as momentum which is not our interest in this article. The second moment is approximating the Fisher Information Matrix, but constrainting it to be diagonal matrix. Thus in ADAM, we only need \( O(n) \) space to store (the approximation of) \( \text{F} \) instead of \( O(n^2) \) and the inversion can be done in \( O(n) \) instead of \( O(n^3) \). In practice ADAM works really well and is currently the <em>de facto</em> standard for optimizing deep neural networks.</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Martens, James. “New insights and perspectives on the natural gradient method.” arXiv preprint arXiv:1412.1193 (2014).</li>
<li>Ly, Alexander, et al. “A tutorial on Fisher information.” Journal of Mathematical Psychology 80 (2017): 40-55.</li>
<li>Pascanu, Razvan, and Yoshua Bengio. “Revisiting natural gradient for deep networks.” arXiv preprint arXiv:1301.3584 (2013).</li>
<li>Kingma, Diederik P., and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint arXiv:1412.6980 (2014).</li>
</ol>
Wed, 14 Mar 2018 07:00:00 +0100
http://wiseodd.github.io/techblog/2018/03/14/natural-gradient/
http://wiseodd.github.io/techblog/2018/03/14/natural-gradient/machine learningtechblogFisher Information Matrix<p>Suppose we have a model parameterized by parameter vector \( \theta \) that models a distribution \( p(x \vert \theta) \). In frequentist statistics, the way we learn \( \theta \) is to maximize the likelihood \( p(x \vert \theta) \) wrt. parameter \( \theta \). To assess the goodness of our estimate of \( \theta \) we define a score function:</p>
<script type="math/tex; mode=display">s(\theta) = \nabla_{\theta} \log p(x \vert \theta) \, ,</script>
<p>that is, score function is the gradient of log likelihood function. The result about score function below is important building block on our discussion.</p>
<p><strong>Claim:</strong>
The expected value of score wrt. our model is zero.</p>
<p><em>Proof.</em> Below, the gradient is wrt. \( \theta \).</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ s(\theta) \right] &= \mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ \nabla \log p(x \vert \theta) \right] \\[5pt]
&= \int \nabla \log p(x \vert \theta) \, p(x \vert \theta) \, \text{d}x \\[5pt]
&= \int \frac{\nabla p(x \vert \theta)}{p(x \vert \theta)} p(x \vert \theta) \, \text{d}x \\[5pt]
&= \int \nabla p(x \vert \theta) \, \text{d}x \\[5pt]
&= \nabla \int p(x \vert \theta) \, \text{d}x \\[5pt]
&= \nabla 1 \\[5pt]
&= 0
\end{align} %]]></script>
<p class="right">\( \square \)</p>
<p>But how certain are we to our estimate? We can define an uncertainty measure around the expected estimate. That is, we look at the covariance of score of our model. Taking the result from above:</p>
<script type="math/tex; mode=display">\mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ (s(\theta) - 0) \, (s(\theta) - 0)^{\text{T}} \right] \, .</script>
<p>We can then see it as an information. The covariance of score function above is the definition of Fisher Information. As we assume \( \theta \) is a vector, the Fisher Information is in a matrix form, called Fisher Information Matrix:</p>
<script type="math/tex; mode=display">\text{F} = \mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ \nabla \log p(x \vert \theta) \, \nabla \log p(x \vert \theta)^{\text{T}} \right] \, .</script>
<p>However, usually our likelihood function is complicated and computing the expectation is intractable. We can approximate the expectation in \( \text{F} \) using empirical distribution \( \hat{q}(x) \), which is given by our training data \( X = \{ x_1, x_2, \cdots, x_N \} \). In this form, \( \text{F} \) is called Empirical Fisher:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\text{F} &= \frac{1}{N} \sum_{i=1}^{N} \nabla \log p(x_i \vert \theta) \, \nabla \log p(x_i \vert \theta)^{\text{T}} \, .
\end{align} %]]></script>
<h2 class="section-heading">Fisher and Hessian</h2>
<p>One property of \( \text{F} \) that is not obvious is that it has the interpretation of being the negative expected Hessian of our model’s log likelihood.</p>
<p><strong>Claim:</strong>
The negative expected Hessian of log likelihood is equal to the Fisher Information Matrix \( \text{F} \).</p>
<p><em>Proof.</em> The Hessian of the log likelihood is given by the Jacobian of its gradient:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\text{H}_{\log p(x \vert \theta)} &= \text{J} \left( \frac{\nabla p(x \vert \theta)}{p(x \vert \theta)} \right) \\[5pt]
&= \frac{ \text{H}_{p(x \vert \theta)} \, p(x \vert \theta) - \nabla p(x \vert \theta) \, \nabla p(x \vert \theta)^{\text{T}}}{p(x \vert \theta) \, p(x \vert \theta)} \\[5pt]
&= \frac{\text{H}_{p(x \vert \theta)} \, p(x \vert \theta)}{p(x \vert \theta) \, p(x \vert \theta)} - \frac{\nabla p(x \vert \theta) \, \nabla p(x \vert \theta)^{\text{T}}}{p(x \vert \theta) \, p(x \vert \theta)} \\[5pt]
&= \frac{\text{H}_{p(x \vert \theta)}}{p(x \vert \theta)} - \left( \frac{\nabla p(x \vert \theta)}{p(x \vert \theta)} \right) \left( \frac{\nabla p(x \vert \theta)}{p(x \vert \theta)}\right)^{\text{T}} \, ,
\end{align} %]]></script>
<p>where the second line is a result of applying quotient rule of derivative. Taking expectation wrt. our model, we have:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ \text{H}_{\log p(x \vert \theta)} \right] &= \mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ \frac{\text{H}_{p(x \vert \theta)}}{p(x \vert \theta)} - \left( \frac{\nabla p(x \vert \theta)}{p(x \vert \theta)} \right) \left( \frac{\nabla p(x \vert \theta)}{p(x \vert \theta)} \right)^{\text{T}} \right] \\[5pt]
&= \mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ \frac{\text{H}_{p(x \vert \theta)}}{p(x \vert \theta)} \right] - \mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ \left( \frac{\nabla p(x \vert \theta)}{p(x \vert \theta)} \right) \left( \frac{\nabla p(x \vert \theta)}{p(x \vert \theta)}\right)^{\text{T}} \right] \\[5pt]
&= \int \frac{\text{H}_{p(x \vert \theta)}}{p(x \vert \theta)} p(x \vert \theta) \, \text{d}x \, - \mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ \nabla \log p(x \vert \theta) \, \nabla \log p(x \vert \theta)^{\text{T}} \right] \\[5pt]
&= \text{H}_{\int p(x \vert \theta) \, \text{d}x} \, - \text{F} \\[5pt]
&= \text{H}_{1} - \text{F} \\[5pt]
&= -\text{F} \, .
\end{align} %]]></script>
<p>Thus we have \( \text{F} = -\mathop{\mathbb{E}}_{p(x \vert \theta)} \left[ \text{H}_{\log p(x \vert \theta)} \right] \).</p>
<p class="right">\( \square \)</p>
<p>Indeed knowing this result, we can see the role of \( \text{F} \) as a measure of curvature of the log likelihood function.</p>
<h2 class="section-heading">Conclusion</h2>
<p>Fisher Information Matrix is defined as the covariance of score function. It is a curvature matrix and has interpretation as the negative expected Hessian of log likelihood function. Thus the immediate application of \( \text{F} \) is as drop-in replacement of \( \text{H} \) in second order optimization methods.</p>
<p>One of the most exciting results of \( \text{F} \) is that it has connection to KL-divergence. This gives rise to natural gradient method, which we shall discuss further in the next article.</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Martens, James. “New insights and perspectives on the natural gradient method.” arXiv preprint arXiv:1412.1193 (2014).</li>
<li>Ly, Alexander, et al. “A tutorial on Fisher information.” Journal of Mathematical Psychology 80 (2017): 40-55.</li>
</ol>
Sun, 11 Mar 2018 07:00:00 +0100
http://wiseodd.github.io/techblog/2018/03/11/fisher-information/
http://wiseodd.github.io/techblog/2018/03/11/fisher-information/machine learningtechblogIntroduction to Annealed Importance Sampling<p>Suppose we have this distribution:</p>
<script type="math/tex; mode=display">p(x) = \frac{1}{Z} f(x)</script>
<p>where \( Z = \sum_x f(x) \). In high dimension, this summation is intractable as there would be exponential number of terms. We are hopeless on computing \( Z \) and in turn we can’t evaluate this distribution.</p>
<p>Now, how do we compute an expectation w.r.t. to \( p(x) \), i.e.:</p>
<script type="math/tex; mode=display">\mathbb{E}_{p(x)}[x] = \sum_x x p(x)</script>
<p>It is impossible for us to do this as we don’t know \( p(x) \). Our best hope is to approximate that. One of the popular way is to use importance sampling. However, importance sampling has a hyperparameter that is hard to adjust, i.e. the proposal distribution \( q(x) \). Importance sampling works well if we can provide \( q(x) \) that is a good approximation of \( p(x) \). It is problematic to find a good \( q(x) \), and this is one of the motivations behind Annealed Importance Sampling (AIS) [1].</p>
<h2 class="section-heading">Annealed Importance Sampling</h2>
<p>The construction of AIS is as follows:</p>
<ol>
<li>Let \( p_0(x) = p(x) \propto f_0(x) \) be our target distribution.</li>
<li>Let \( p_n(x) = q(x) \propto f_n(x) \) be our proposal distribution which only requirement is that we can sample independent point from it. It doesn’t have to be close to \( p_0(x) \) thus the requirement is more relaxed than importance sampling.</li>
<li>Define a sequence of intermediate distributions starting from \( p_n(x) \) to \( p_0(x) \) call it \( p_j(x) \propto f_j(x) \). The requirement is that \( p_j(x) \neq 0 \) whenever \( p_{j-1}(x) \neq 0 \). That is, \( p_j(x) \) has to cover the support of \( p_{j-1}(x) \) so that we can take the ratio.</li>
<li>Define local transition probabilities \( T_j(x, x’) \).</li>
</ol>
<p>Then to sample from \( p_0(x) \), we need to:</p>
<ul>
<li>Sample an independent point from \( x_{n-1} \sim p_n(x) \).</li>
<li>Sample \( x_{n-2} \) from \( x_{n-1} \) by doing MCMC w.r.t. \( T_{n-1} \).</li>
<li>\( \dots \)</li>
<li>Sample \( x_1 \) from \( x_2 \) by doing MCMC w.r.t. \( T_2 \).</li>
<li>Sample \( x_0 \) from \( x_1 \) by doing MCMC w.r.t. \( T_1 \).</li>
</ul>
<p>Intuitively given two distributions, which might be disjoint in their support, we create intermediate distributions that are “bridging” from one to another. Then we do MCMC to move around these distributions and hope that we end up in our target distribution.</p>
<p>At this point, we have sequence of points \( x_{n-1}, x_{n-2}, \dots, x_1, x_0 \). We can use them to compute the importance weight as follows:</p>
<script type="math/tex; mode=display">w = \frac{f_{n-1}(x_{n-1})}{f_n(x_{n-1})} \frac{f_{n-2}(x_{n-2})}{f_{n-1}(x_{n-2})} \dots \frac{f_1(x_1)}{f_2(x_1)} \frac{f_0(x_0)}{f_1(x_0)}</script>
<p>Notice that \( w \) is telescoping, and without the intermediate distributions, it reduces to the usual weight used in importance sampling.</p>
<p>With this importance weight, then we can compute the expectation as in importance sampling:</p>
<script type="math/tex; mode=display">\mathbb{E}_{p(x)}[x] = \frac{1}{\sum_i^N w_i} \sum_i^N x_i w_i</script>
<p>where \( N \) is the number of samples.</p>
<h2 class="section-heading">Practicalities</h2>
<p>We now have the full algorithm. However several things are missing, namely, the choice of \( f_j(x) \) and \( T_j(x, x’) \).</p>
<p>For the intermediate distributions, we can set it as an annealing between to our target and proposal functions, i.e:</p>
<script type="math/tex; mode=display">f_j(x) = f_0(x)^{\beta_j} f_n(x)^{1-\beta_j}</script>
<p>where \( 1 = \beta_0 > \beta_1 > \dots > \beta_n = 0 \). For visual example, annealing between \( N(0, I) \) to \( N(5, I) \) with 10 intermediate distributions gives us:</p>
<p><img src="/img/2017-12-23-annealed-importance-sampling/intermediate_dists.png" alt="Annealing" /></p>
<p>For the transition functions, we can use Metropolis-Hastings with acceptance probability:</p>
<script type="math/tex; mode=display">A_j(x, x') = \frac{f_j(x')}{f_j(x)}</script>
<p>assuming we have symmetric proposal, e.g. \( N(0, I) \).</p>
<h2 class="section-heading">Implementation</h2>
<p>To make it more concrete, we can look at the simple implementation of AIS. We first define our target function:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="n">np</span>
<span class="kn">import</span> <span class="nn">scipy.stats</span> <span class="k">as</span> <span class="n">st</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="n">plt</span>
<span class="k">def</span> <span class="nf">f_0</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="s">"""
Target distribution: </span><span class="err">\</span><span class="s">propto N(-5, 2)
"""</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">x</span><span class="o">+</span><span class="mi">5</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="o">/</span><span class="mi">2</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span>
</code></pre></div></div>
<p>Next we define our proposal function and distribution, as we assume we can easily sample independent points from it:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="k">def</span> <span class="nf">f_j</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">beta</span><span class="p">):</span>
<span class="s">"""
Intermediate distribution: interpolation between f_0 and f_n
"""</span>
<span class="k">return</span> <span class="n">f_0</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">**</span><span class="n">beta</span> <span class="o">*</span> <span class="n">f_n</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">**</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">beta</span><span class="p">)</span>
<span class="c"># Proposal distribution: 1/Z * f_n</span>
<span class="n">p_n</span> <span class="o">=</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
</code></pre></div></div>
<p>Lastly, we define our transition function:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="k">def</span> <span class="nf">T</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="n">n_steps</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
<span class="s">"""
Transition distribution: T(x'|x) using n-steps Metropolis sampler
"""</span>
<span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_steps</span><span class="p">):</span>
<span class="c"># Proposal</span>
<span class="n">x_prime</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">()</span>
<span class="c"># Acceptance prob</span>
<span class="n">a</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">x_prime</span><span class="p">)</span> <span class="o">/</span> <span class="n">f</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">()</span> <span class="o"><</span> <span class="n">a</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x_prime</span>
<span class="k">return</span> <span class="n">x</span>
</code></pre></div></div>
<p>Then, we are ready to do the sampling:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">)</span>
<span class="n">n_inter</span> <span class="o">=</span> <span class="mi">50</span> <span class="c"># num of intermediate dists</span>
<span class="n">betas</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n_inter</span><span class="p">)</span>
<span class="c"># Sampling</span>
<span class="n">n_samples</span> <span class="o">=</span> <span class="mi">100</span>
<span class="n">samples</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">n_samples</span><span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">n_samples</span><span class="p">)</span>
<span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_samples</span><span class="p">):</span>
<span class="c"># Sample initial point from q(x)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">p_n</span><span class="o">.</span><span class="n">rvs</span><span class="p">()</span>
<span class="n">w</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">betas</span><span class="p">)):</span>
<span class="c"># Transition</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">T</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">f_j</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">betas</span><span class="p">[</span><span class="n">n</span><span class="p">]),</span> <span class="n">n_steps</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="c"># Compute weight in log space (log-sum):</span>
<span class="c"># w *= f_{n-1}(x_{n-1}) / f_n(x_{n-1})</span>
<span class="n">w</span> <span class="o">+=</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">f_j</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">betas</span><span class="p">[</span><span class="n">n</span><span class="p">]))</span> <span class="o">-</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">f_j</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">betas</span><span class="p">[</span><span class="n">n</span><span class="o">-</span><span class="mi">1</span><span class="p">]))</span>
<span class="n">samples</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">x</span>
<span class="n">weights</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">w</span><span class="p">)</span> <span class="c"># Transform back using exp</span>
</code></pre></div></div>
<p>Notice, in the code above we do log-sum-exp trick to avoid underflow when computing \( w \).</p>
<p>After the iteration finished, we have with ourselves our samples and their corresponding weights, from which we can compute the expectation as in importance sampling:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="c"># Compute expectation</span>
<span class="n">a</span> <span class="o">=</span> <span class="mi">1</span><span class="o">/</span><span class="n">np</span><span class="o">.</span><span class="nb">sum</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="nb">sum</span><span class="p">(</span><span class="n">weights</span> <span class="o">*</span> <span class="n">samples</span><span class="p">)</span>
</code></pre></div></div>
<p>In this example, the result should be very close to the mean of our target Gaussian i.e. \( -5 \).</p>
<h2 class="section-heading">Discussion</h2>
<p>AIS is a very interesting and useful way to do importance sampling without having to sweat about the choice of proposal \( q(x) \). However, No Free Lunch theorem also applies to AIS: we still need to tune the hyperparameters such as the number of intermediate distributions and the number of MCMC step at each transition. This could potentially very expensive. Moreover, as in other sampling algorithms, it is inherently sequential and can’t exploit fully the availability of GPU.</p>
<p>Nevertheless, AIS is powerful and has been used even nowadays. It is a popular choice of algorithms for approximating partition function in RBM [2]. Moreover it has been used for Deep Generative Models (GAN, VAE) [3].</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Neal, Radford M. “Annealed importance sampling.” Statistics and computing 11.2 (2001): 125-139.</li>
<li>Salakhutdinov, Ruslan. “Learning and evaluating Boltzmann machines.” Tech. Rep., Technical Report UTML TR 2008-002, Department of Computer Science, University of Toronto (2008).
APA</li>
<li>Wu, Yuhuai, et al. “On the quantitative analysis of decoder-based generative models.” arXiv preprint arXiv:1611.04273 (2016).</li>
</ol>
Sat, 23 Dec 2017 07:00:00 +0100
http://wiseodd.github.io/techblog/2017/12/23/annealed-importance-sampling/
http://wiseodd.github.io/techblog/2017/12/23/annealed-importance-sampling/machine learningbayesiantechblogGibbs Sampler for LDA<p>Latent Dirichlet Allocation (LDA) [1] is a mixed membership model for topic modeling. Given a set of documents in bag of words representation, we want to infer the underlying topics those documents represent. To get a better intuition, we shall look at LDA’s generative story. Note, the full code is available at <a href="https://github.com/wiseodd/mixture-models">https://github.com/wiseodd/mixture-models</a>.</p>
<p>Given \( i = \{1, \dots, N_D\} \) the document index, \( v = \{1, \dots, N_W\} \) the word index, \( k = \{1, \dots, N_K\} \) the topic index, LDA assumes:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
\mathbf{\pi}_i &\sim \text{Dir}(\mathbf{\pi}_i \, \vert \, \alpha) \\[10pt]
z_{iv} &\sim \text{Cat}(z_{iv} \, \vert \, \mathbf{\pi}_i) \\[10pt]
\mathbf{b}_k &\sim \text{Dir}(\mathbf{b}_k \, \vert \, \gamma) \\[10pt]
y_{iv} &\sim \text{Cat}(y_{iv} \, \vert \, z_{iv} = k, \mathbf{B})
\end {align} %]]></script>
<p>where \( \alpha \) and \( \gamma \) are the parameters for the Dirichlet priors. They tell us how narrow or spread the document topic and topic word distributions are.</p>
<p>Details for the above generative process above in words:</p>
<ol>
<li>Assume each document generated by selecting the topic first. Thus, sample \( \mathbf{\pi}_i \), the topic distribution for \( i \)-th document.</li>
<li>Assume each words in \( i \)-th document comes from one of the topics. Therefore, we sample \( z_{iv} \), the topic for each word \( v \) in document \( i \).</li>
<li>Assume each topic is composed of words, e.g. topic “computer” consits of words “cpu”, “gpu”, etc. Therefore, we sample \( \mathbf{b}_k \), the distribution those words for particular topic \( k \).</li>
<li>Finally, to actually generate the word, given that we already know it comes from topic \( k \), we sample the word \( y_{iv} \) given the \( k \)-th topic word distribution.</li>
</ol>
<h2 class="section-heading">Inference</h2>
<p>The goal of inference in LDA is that given a corpus, we infer the underlying topics that explain those documents, according to the generative process above. Essentially, given \( y_{iv} \), we are inverting the above process to find \( z_{iv} \), \( \mathbf{\pi}_i \), and \( \mathbf{b}_k \).</p>
<p>We will infer those variables using Gibbs Sampling algorithm. In short, it works by sampling each of those variables given the other variables (full conditional distribution). Because of the conjugacy, the full conditionals are as follows:</p>
<script type="math/tex; mode=display">% <![CDATA[
\begin{align}
p(z_{iv} = k \, \vert \, \mathbf{\pi}_i, \mathbf{b}_k) &\propto \exp(\log \pi_{ik} + \log b_{k, y_{iv}}) \\[10pt]
p(\mathbf{\pi}_i \, \vert \, z_{iv} = k, \mathbf{b}_k) &= \text{Dir}(\alpha + \sum_l \mathbb{I}(z_{il} = k)) \\[3pt]
p(\mathbf{b}_k \, \vert \, z_{iv} = k, \mathbf{\pi}_i) &= \text{Dir}(\gamma + \sum_i \sum_l \mathbb{I}(y_{il} = v, z_{il} = k))
\end {align} %]]></script>
<p>Essentially, what we are doing is to count the assignment of words and documents to particular topics. Those are the sufficient statistics for the full conditionals</p>
<p>Given those full conditionals, the rest is as easy as plugging those into the Gibbs Sampling framework, as we shall discuss in the next section.</p>
<h2 class="section-heading">Implementation</h2>
<p>We begin with randomly initializing topic assignment matrix \( \mathbf{Z}_{N_D \times N_W} \). We also sample the initial values of \( \mathbf{\Pi}_{N_D \times N_K} \) and \( \mathbf{B}_{N_K \times N_W} \).</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="c"># Dirichlet priors</span>
<span class="n">alpha</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">gamma</span> <span class="o">=</span> <span class="mi">1</span>
<span class="c"># Z := word topic assignment</span>
<span class="n">Z</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="n">N_D</span><span class="p">,</span> <span class="n">N_W</span><span class="p">])</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_D</span><span class="p">):</span>
<span class="k">for</span> <span class="n">l</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_W</span><span class="p">):</span>
<span class="n">Z</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">l</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="n">N_K</span><span class="p">)</span> <span class="c"># randomly assign word's topic</span>
<span class="c"># Pi := document topic distribution</span>
<span class="n">Pi</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="n">N_D</span><span class="p">,</span> <span class="n">N_K</span><span class="p">])</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_D</span><span class="p">):</span>
<span class="n">Pi</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">dirichlet</span><span class="p">(</span><span class="n">alpha</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">N_K</span><span class="p">))</span>
<span class="c"># B := word topic distribution</span>
<span class="n">B</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="n">N_K</span><span class="p">,</span> <span class="n">N_W</span><span class="p">])</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_K</span><span class="p">):</span>
<span class="n">B</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">dirichlet</span><span class="p">(</span><span class="n">gamma</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">N_W</span><span class="p">))</span>
</code></pre></div></div>
<p>Then we sample the new values for each of those variables from the full conditionals in the previous section, and iterate:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="k">for</span> <span class="n">it</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span>
<span class="c"># Sample from full conditional of Z</span>
<span class="c"># ---------------------------------</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_D</span><span class="p">):</span>
<span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_W</span><span class="p">):</span>
<span class="c"># Calculate params for Z</span>
<span class="n">p_iv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">Pi</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">B</span><span class="p">[:,</span> <span class="n">X</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">v</span><span class="p">]]))</span>
<span class="n">p_iv</span> <span class="o">/=</span> <span class="n">np</span><span class="o">.</span><span class="nb">sum</span><span class="p">(</span><span class="n">p_iv</span><span class="p">)</span>
<span class="c"># Resample word topic assignment Z</span>
<span class="n">Z</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">p_iv</span><span class="p">)</span><span class="o">.</span><span class="n">argmax</span><span class="p">()</span>
<span class="c"># Sample from full conditional of Pi</span>
<span class="c"># ----------------------------------</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_D</span><span class="p">):</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N_K</span><span class="p">)</span>
<span class="c"># Gather sufficient statistics</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_K</span><span class="p">):</span>
<span class="n">m</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="nb">sum</span><span class="p">(</span><span class="n">Z</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="n">k</span><span class="p">)</span>
<span class="c"># Resample doc topic dist.</span>
<span class="n">Pi</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="p">:]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">dirichlet</span><span class="p">(</span><span class="n">alpha</span> <span class="o">+</span> <span class="n">m</span><span class="p">)</span>
<span class="c"># Sample from full conditional of B</span>
<span class="c"># ---------------------------------</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_K</span><span class="p">):</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N_W</span><span class="p">)</span>
<span class="c"># Gather sufficient statistics</span>
<span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_W</span><span class="p">):</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_D</span><span class="p">):</span>
<span class="k">for</span> <span class="n">l</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_W</span><span class="p">):</span>
<span class="n">n</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">+=</span> <span class="p">(</span><span class="n">X</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">l</span><span class="p">]</span> <span class="o">==</span> <span class="n">v</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">Z</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">l</span><span class="p">]</span> <span class="o">==</span> <span class="n">k</span><span class="p">)</span>
<span class="c"># Resample word topic dist.</span>
<span class="n">B</span><span class="p">[</span><span class="n">k</span><span class="p">,</span> <span class="p">:]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">dirichlet</span><span class="p">(</span><span class="n">gamma</span> <span class="o">+</span> <span class="n">n</span><span class="p">)</span>
</code></pre></div></div>
<p>And basically we are done. We could inspect the result by looking at those variables after some iterations of the algorithm.</p>
<h2 class="section-heading">Example</h2>
<p>Let’s say we have these data:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="c"># Words</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">])</span>
<span class="c"># D := document words</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span>
<span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
<span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
<span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span>
<span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span>
<span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">]</span>
<span class="p">])</span>
<span class="n">N_D</span> <span class="o">=</span> <span class="n">X</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="c"># num of docs</span>
<span class="n">N_W</span> <span class="o">=</span> <span class="n">W</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="c"># num of words</span>
<span class="n">N_K</span> <span class="o">=</span> <span class="mi">2</span> <span class="c"># num of topics</span>
</code></pre></div></div>
<p>Those data are already in bag of words representation, so it is a little abstract at a glance. However if we look at it, we could see two big clusters of documents based on their words: \( \{ 1, 2, 3 \} \) and \( \{ 4, 5, 6 \} \). Therefore, we expect after our sampler converges to the posterior, the topic distribution for those documents will follow our intuition.</p>
<p>Here is the result:</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>Document topic distribution:
----------------------------
[[ 0.81960751 0.18039249]
[ 0.8458758 0.1541242 ]
[ 0.78974177 0.21025823]
[ 0.20697807 0.79302193]
[ 0.05665149 0.94334851]
[ 0.15477016 0.84522984]]
</code></pre></div></div>
<p>As we can see, indeed document 1, 2, and 3 tend to be in the same cluster. The same could be said for document 4, 5, 6.</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Blei, David M., Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet allocation.” Journal of machine Learning research 3.Jan (2003): 993-1022.</li>
<li>Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.</li>
</ol>
Thu, 07 Sep 2017 11:56:00 +0200
http://wiseodd.github.io/techblog/2017/09/07/lda-gibbs/
http://wiseodd.github.io/techblog/2017/09/07/lda-gibbs/machine learningbayesiantechblogBoundary Seeking GAN<p>Boundary Seeking GAN (BGAN) is a recently introduced modification of GAN training. Here, in this post, we will look at the intuition behind BGAN, and also the implementation, which consists of one line change from vanilla GAN.</p>
<h2 class="section-heading">Intuition of Boundary Seeking GAN</h2>
<p>Recall, in GAN the following objective is optimized:</p>
<p><img src="/img/2016-09-17-gan-tensorflow/obj.png" alt="GAN Value Function" /></p>
<p>Following the objective above, as shown in the original GAN paper [1], the optimal discriminator \( D^*_G(x) \) is given by:</p>
<script type="math/tex; mode=display">D^*_G(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}</script>
<p>Hence, if we know the optimal discriminator with respect to our generator, \( D^*_G(x) \), we are good to go, as we have this following amount by rearranging the above equation:</p>
<script type="math/tex; mode=display">p_{data}(x) = p_g(x) \frac{D^*_G(x)}{1 - D^*_G(x)}</script>
<p>What does it tell us is that, even if we have non-optimal generator \( G \), we could still find the true data distribution by weighting \( p_g(x) \), the generator’s distribution, with the ratio of optimal discriminator for that generator.</p>
<p>Unfortunately, perfect discriminator is hard to get. But we can work with its approximation \( D(x) \) instead. The assumption is that if we train \( D(x) \) more and more, it becomes closer and closer to \( D^*_G(x) \), and our GAN training becomes better and better.</p>
<p>If we think further at the above equation, we would get \( p_{data}(x) = p_g(x) \), i.e. our generator is optimal, if the ratio of the discriminator is equal to one. If that ratio is equal to one, then consequently \( D(x) \) must be equal to \( 0.5 \). Therefore, the optimal generator is the one that can make make the discriminator to be \( 0.5 \) everywhere. Notice that \( D(x) = 0.5 \) is the decision boundary. Hence, we want to generate \( x \sim G(z) \) such that \( D(x) \) is near the decision boundary. Therefore, the authors of the paper named this method <em>Boundary Seeking GAN</em> (BGAN).</p>
<p>That statement has a very intuitive explanation. If we consider the generator to be perfect, \( D(x) \) can’t distinguish the real and the fake data. In other words, real and fake data are equally likely, as far as \( D(x) \) concerned. As \( D(x) \) has two outputs (real or fake), then, those outputs has the probability of \( 0.5 \) each.</p>
<p>Now, we could modify the generator’s objective in order to make the discriminator outputting \( 0.5 \) for every data we generated. One way to do it is to minimize the distance between \( D(x) \) and \( 1 - D(x) \) for all \( x \). If we do so, as \( D(x) \) is a probability measure, we will get the minimum at \( D(x) = 1 - D(x) = 0.5 \), which is what we want.</p>
<p>Therefore, the new objective for the generator is:</p>
<script type="math/tex; mode=display">\min_{G} \, \mathbb{E}_{z \sim p_z(z)} \left[ \frac{1}{2} (\log D(x) - \log(1 - D(x)))^2 \right]</script>
<p>which is just an \( L_2 \) loss. We added \( \log \) as \( D(x) \) is a probability measure, and we want to undo that, as we are talking about distance, not divergence.</p>
<h2 class="section-heading">Implementation</h2>
<p>This should be the shortest ever implementation note in my blog.</p>
<p>We just need to change the original GAN’s \( G \) objective from:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="n">G_loss</span> <span class="o">=</span> <span class="o">-</span><span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">log</span><span class="p">(</span><span class="n">D_fake</span><span class="p">))</span>
</code></pre></div></div>
<p>to:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="n">G_loss</span> <span class="o">=</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">((</span><span class="n">log</span><span class="p">(</span><span class="n">D_fake</span><span class="p">)</span> <span class="o">-</span> <span class="n">log</span><span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">D_fake</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span>
</code></pre></div></div>
<p>And we’re done. For full code, check out <a href="https://github.com/wiseodd/generative-models">https://github.com/wiseodd/generative-models</a>.</p>
<h2 class="section-heading">Conclusion</h2>
<p>In this post we looked at a new GAN variation called Boundary Seeking GAN (BGAN). We looked at the intuition of BGAN, and tried to understand why it’s called “boundary seeking”.</p>
<p>We also implemented BGAN in Pytorch with just one line of code change.</p>
<h2 class="section-heading">References</h2>
<ol>
<li>Hjelm, R. Devon, et al. “Boundary-Seeking Generative Adversarial Networks.” arXiv preprint arXiv:1702.08431 (2017). <a href="https://arxiv.org/abs/1702.08431">arxiv</a></li>
<li>Goodfellow, Ian, et al. “Generative adversarial nets.” Advances in Neural Information Processing Systems. 2014. <a href="http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf">arxiv</a></li>
</ol>
Tue, 07 Mar 2017 00:10:00 +0100
http://wiseodd.github.io/techblog/2017/03/07/boundary-seeking-gan/
http://wiseodd.github.io/techblog/2017/03/07/boundary-seeking-gan/machine learninggantechblog